• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2011.tde-29112011-162103
Document
Author
Full name
Douglas José Alem Júnior
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2011
Supervisor
Committee
Morabito Neto, Reinaldo (President)
Costa, Alysson Machado
Ferreira, Paulo Augusto Valente
Rangel, Maria do Socorro Nogueira
Souza, Cid Carvalho de
Title in Portuguese
Programação estocástica e otimização robusta no planejamento da produção de empresas moveleiras
Keywords in Portuguese
Empresas moveleiras
Otimização robusta
Problemacombinado de dimensionamento de lotes e corte de estoque
Programação estoástica
Abstract in Portuguese
O planejamento da produção em indústrias moveleiras de pequeno porte é comumente constituído por decisões referentes ao volume de produção e à política de estoque, com o objetivo de minimizar o desperdício de material, os atrasos e as horas-extras utilizadas ao longo do horizonte de planejamento. Administrar tais decisões de uma maneira tratável e eficiente é, em geral, um desafio, especialmente considerando a natureza incerta dos dados. Nessa tese, são desenvolvidos modelos de otimização para apoiar tais decisões no contexto do problema combinado de dimensionamento de lotes e corte de estoque sob incertezas que surge em indústrias moveleiras. Para lidar com as incertezas dos dados, são investigadas duas metodologias: programação estocástica e otimização robusta. Dessa maneira, são propostos modelos de programação estocástica de dois estágios com recurso, assim como modelos estocásticos robustos que incorporam aversão ao risco. A motivação em também desenvolver modelos baseados em otimização robusta é considerar casos práticos em que não há uma descrição probabilística explícita dos dados de entrada, assim como evitar trabalhar com numerosos cenários, o que pode tornar o modelo estocástico computacionalmente intratável. Os experimentos numéricos baseados em exemplares reais de uma empresa moveleira de pequeno porte mostram que as soluções obtidas pelos modelos de programação estocástica fornecem planos de produção robustos e que o (a) decisor (a) pode designar suas preferências em relação ao risco aos modelos, assim como controlar o tradeoff entre o custo total esperado e a robustez da solução. Em relação aos resultados dos modelos de otimização robusta, são obtidos alguns insights entre os chamados budgets de incerteza, as taxas de atendimento da demanda e os valores ótimos. Além disso, evidências numéricas indicam que budgets de incerteza menos conservadores resultam em níveis de serviço razoáveis com baixos custos globais, enquanto a abordagem de pior caso gera, relativamente, boas taxas de atendimento da demanda, mas com custos globais elevados
Title in English
Stochastic programming and robust optimization in the production planning of furniture industries
Keywords in English
Combined lot-sizing and cutting-stock problem
Furniture industries
Robust optimization
Stochastic programming
Abstract in English
Production planning procedures in small-size furniture companies commonly consist of decisions with respect to production level and inventory policy, while attempting to minimize trim-loss, backlogging and overtime usage throughout the planning horizon. Managing these decisions in a tractable and efficient way is often a challenge, especially when the uncertainty of data is taken into account. In this thesis, we develop optimization models to support these decisions in the context of the combined lot-sizing and cutting-stock problem that arises in furniture companies. To deal with data uncertainty, we investigate two methodologies: stochastic programming and robust optimization. In the former case, we propose two-stage stochastic programming models with recourse, as well as robust stochastic models to incorporate risk-aversion. In the latter case, our motivation to investigate robust optimization models is the lack of an explicit probabilistic description of the input data. Furthermore, we want to avoid dealing with a large number of scenarios, which typically lead to computationally intractable stochastic programming models. Numerical experiments based on real data from a small-size furniture plant show that the solutions of the stochastic programming models provide robust production plans so that the decision-maker can assign his or her risk preferences to the model and control the tradeoff between the expected total cost and solution robustness. Regarding the results from the robust optimization models, we provide some insights into the relationship among budgets of uncertainty, fill rates and optimal values. Moreover, numerical evidence indicate that less conservative budgets of uncertainty result in reasonable service levels with cheaper global costs, while worst case deterministic approaches lead to relatively good fill rates, but with prohibitive global costs
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
alem.pdf (3.21 Mbytes)
Publishing Date
2011-11-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.