• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2013.tde-30012014-111520
Documento
Autor
Nombre completo
Fabiano Berardo de Sousa
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2013
Director
Tribunal
Liang, Zhao (Presidente)
Papa, João Paulo
Romero, Roseli Aparecida Francelin
Título en portugués
Análise de modelo de Hopfield com topologia de rede complexa
Palabras clave en portugués
Modelo de Hopfield
Redes complexas
Redes neurais artificiais
Redes neurais caóticas
Sistemas dinâmicos
Resumen en portugués
Redes neurais biológicas contêm bilhões de células (neurônios) agrupadas em regiões espacial e funcionalmente distintas. Elas também apresentam comportamentos complexos, tais como dinâmicas periódicas e caóticas. Na área da Inteligência Artificial, pesquisas mostram que Redes Neurais Caóticas, isto é, modelos de Redes Neurais Artificiais que operam com dinâmicas complexas, são mais eficientes do que modelos tradicionais no que diz respeito a evitar memórias espúrias. Inspirado pelo fato de que o córtex cerebral contém agrupamentos de células e motivado pela eficiência no uso de dinâmicas complexas, este projeto de pesquisa investiga o comportamento dinâmico de um modelo de Rede Neural Artificial Recorrente, como o de Hopfield, porém com a topologia sináptica reorganizada a ponto de originar agrupamentos de neurônios, tal como acontece em uma Rede Complexa quando esta apresenta uma estrutura de comunidades. O modelo de treinamento tradicional de Hopfield também é alterado para uma regra de aprendizado que posta os padrões em ciclos, gerando uma matriz de pesos assimétrica. Resultados indicam que o modelo proposto oscila entre comportamentos periódicos e caóticos, dependendo do grau de fragmentação das sinapses. Com baixo grau de fragmentação, a rede opera com dinâmica periódica, como consequência da regra de treinamento utilizada. Dinâmicas caóticas parecem surgir quando existe um alto grau de fragmentação. Mostra-se, também, que é possível obter caoticidade em uma topologia adequadamente modular, ou seja, como uma estrutura de comunidades válida. Desta forma, este projeto de pesquisa provê uma metodologia alternativa para se construir um modelo de Rede Neural Artificial que realiza tarefas de reconhecimento de padrões, explorando dinâmicas complexas por meio de uma estrutura de conexões que se mostra mais similar à topologia existente no cérebro
Título en inglés
Investigation of the Hopfield model with complex network topology
Palabras clave en inglés
Artificial neural networks
Chaotic neural networks
Complex networks
Dynamical systems
Hopfield model
Resumen en inglés
Biological neural networks contain billions of neurons divided in spatial and functional clusters to perform dierent tasks. It also operates with complex dynamics such as periodic and chaotic ones. It has been shown that Chaotic Neural Networks are more efficient than conventional recurrent neural networks in avoiding spurious memory. Inspired by the fact that the cerebral cortex has speficic groups of cells and motivated by the efficiency of complex behaviors, in this document we investigate the dynamics of a recurrent neural network, as the Hopfield one, but with neurons coupled in such a way to form a complex network community structure. Also, we generate an asymmetric weight matrix placing pattern cycles during learning. Our study shows that the network can operate with periodic and chaotic dynamics, depending on the degree of the connection's fragmentation. For low fragmentation degree, the network operates with periodic dynamic duo to the employed learning rule. Chaotic behavior seems to rise for a high fragmentation degree. We also show that the neural network can hold both chaotic dynamic and a high value of modularity measure at the same time, indicating an acceptable community structure. These findings provide an alternative way to design dynamical neural networks to perform pattern recognition tasks exploiting periodic and chaotic dynamics by using a more similar topology to the topology of the brain
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2014-01-30
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.