• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2004.tde-02022005-153135
Document
Author
Full name
Aldicio José Miranda
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2004
Supervisor
Committee
Saia, Marcelo José (President)
Ruas, Maria Aparecida Soares
Tomazella, João Nivaldo
Title in Portuguese
Os tipos estáveis e multiplicidades de germes quase homogêneos de Cn em Cn
Keywords in Portuguese
finitamente determinados
Invariantes numéricos
multiplicidades
Abstract in Portuguese
A determinação dos invariantes numéricos associados a germes de aplicações diferenciáveis é uma ferramenta muito útil no estudo de problemas de equisingularidade em famílias. Em geral, estes invariantes são obtidos algebricamente através de esquemas r-dimensionais, que surgem nos tipos estáveis de uma perturbação estável do germe. Neste trabalho é feito um estudo sobre estes invariantes nos tipos estáveis de germes de aplicações holomorfas f : (Cn,0) em (Cn,0) finitamente determinados de coposto 1. Inicialmente é feita uma caracterização completa de todos os tipos estáveis, bem como de sua geometria. Como aplicações são estudados os invariantes no discriminante de germes quase homogêneos. São descritas fórmulas para os invariantes 0-stáveis de germes de (Cn,0) em (Cn,0). Estes resultados são aplicados para o cálculo das multiplicidades polares do discriminante de germes quase homogêneos de (C3,0) em (C3,0).
Title in English
The stable types and multiplicities of weighted homogeneous germs from Cn to Cn
Keywords in English
finitely determined
multiplicities
numerical invariants
Abstract in English
The determination of the numerical invariants associated to map germs is a helpful tool in the study of problems of equisingularity in families. In general, these invariants are given as zero schemes, that appear in the stable types of a stable perturbation of the germ. In this work we study the invariants in the stable types of corank one finitely determined holomorphic map germs f : (Cn,0) to (Cn,0). First we completely characterize all stable types and study their geometry. As applications are studied the invariants in the discriminant of weighted homogeneous germs. Formulas are described for the 0-stable invariants of map germs of (Cn,0) to (Cn,0) and these results are applied to compute the polar multiplicities of the discriminant of weighted homogeneous germes of (C3,0) to (C3,0).
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
DissertAldicio.pdf (255.58 Kbytes)
Publishing Date
2005-04-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.