• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.55.2019.tde-02122019-160253
Documento
Autor
Nome completo
João Nivaldo Tomazella
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 1999
Orientador
Banca examinadora
Ruas, Maria Aparecida Soares (Presidente)
Birbrair, Lev
Marar, Washington Luiz
Sad, Paulo Roberto Grossi
Saia, Marcelo José
Título em português
Seções de Variedades Analíticas
Palavras-chave em português
Não disponível
Resumo em português
O objetivo deste trabalho é estudar a trivialidade topológica de famílias de seções de variedades analíticas. Estendemos parcialmente os resultados de B. Teissier e T. Gaffney, mostrando que o fecho integral do espaço tangente dos grupos RV, e KRV é o objeto infinitesimal que dá uma condição suficiente para a trivialidade topológica de famílias de seções. Procuramos também definir um conceito de equisingularidade para famílias de seções, que chamaremos de V-equisingularidade. Os métodos utilizados permitem a obtenção de resultados precisos quando a variedade analítica é quase homogênea e a família de seções é uma deformação de um germe quasehomogêneo f consistente com V, por termos de filtração maior ou igual a filtração de f. Resultados de M. Saia sobre a determinação do fecho integral de um ideal através de seu poliedro de Newton são usados para descrever um método eficiente para garantir a trivialidade topológica de famílias Newton não-degeneradas.
Título em inglês
Not available
Palavras-chave em inglês
Not available
Resumo em inglês
In this work we study the topological triviality of families of sections of analytic varieties. We partially extend results of B. Teissier and T. Gaffney, showing that the integral closure of the tangent space of the groups RV and KRV is an adequate infinitesimal object to study topological triviality and equisingularity of families of sections. The methods we introduce allow us to prove precise results on deformations by terms of positive weights of a weighted homogeneous analytic variety. Results M. Saia on the determination of the integral closure of an ideal in terms of its Newton polyhedron are used to describe an efficient method of equisingularity of Newton-non degenerate families of sections
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-12-02
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.