• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.55.2019.tde-02122019-170107
Document
Author
Full name
João Nivaldo Tomazella
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1992
Supervisor
Committee
Ruas, Maria Aparecida Soares (President)
Costa, Sueli Irene Rodrigues
Daccach, Janey Antonio
Title in Portuguese
O NÚMERO DE MILNOR
Keywords in Portuguese
Não disponível
Abstract in Portuguese
J. Milnor [1] estudou a topologia de hipersuperfícies complexas introduzindo uma fibração local a qual está associada a singularidade isolada. Ele mostrou que a fibra da fibração tem o mesmo tipo de homotopia de um bouquet de esferas. O número de esferas deste bouquet é o número de Milnor. o qual é um invariante do tipo topológico da singularidade. Nesta dissertação nós estudamos a caracterização geométrica e algébrica do número de Milnor e obtivemos a equivalência entre elas.
Title in English
Not available
Keywords in English
Not available
Abstract in English
J. Milnor [1] studied the topology of complex hypersurfaces by introducing a local fibration which is associated with each isolated singular point. He showed that the fiber of the fibration has the homotopy type of a wedge of spheres. The number of spheres of this wedge is the Milnor number. which is an invariant of the topological type of the singularity. In this dissertation we study the geometric and the algebraic characterization of the Milnor number and we obtain the equivalence between them.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.