• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.55.2019.tde-02122019-171244
Document
Author
Full name
Maria Elisa Quiroga
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1999
Supervisor
Committee
Táboas, Plácido Zoega (President)
Carvalho, Luiz Antonio Vieira de
Fichmann, Luiz
Ladeira, Luiz Augusto da Costa
Santos, Jair Silverio dos
Title in Portuguese
Sobre Alguns Problemas de Periodicidade em Equações Diferenciais Impulsivas com Retardamento
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Nosso principal interesse é a existência de soluções periódicas de equações diferenciais retardadas impulsivas. Como conseqüência de nosso estudo, algumas peculiaridades deste tipo de equação são destacadas. Resolvemos alguns problemas propostos na literatura, onde a dificuldade é a construção de um contexto para a aplicação de algum principio de ponto fixo. Em uma equação planar, mostramos que condições de auto-sustentação podem desempenhar o papel de dissipatividade em problemas relativos a existência de soluções periódicas.
Title in English
Not available
Keywords in English
Not available
Abstract in English
Our main concern is the existence of periodic solutions of impulsive retarded differential equations. As a consequence of our study, some peculiarities of this ldnd of equation are pointed out. We solve some problems proposed in the literature where the difficulty is the construction of a framework for the application of some fixed point principie. In a planar equation we show that self-supporting conditions can play the role of dissipativeness in problems related to existence of periodic solutions.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.