• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2012.tde-03092012-145322
Document
Author
Full name
Vinicius Augusto Takahashi Arakawa
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2012
Supervisor
Committee
Apaza, Carlos Alberto Maquera (President)
Buzzi, Claudio Aguinaldo
Firmo, Sebastião Marcos Antunes
Ragazzo, Clodoaldo Grotta
Tahzibi, Ali
Title in Portuguese
Sobre classificação de ações Anosov de R^k em (k+2)-variedades fechadas
Keywords in Portuguese
Ações Anosov
Irredutibilidade
Losangos invariantes no recobrimento
Sistemas Anosov
Sistemas dinâmicos
Abstract in Portuguese
Nesse trabalho são apresentados alguns resultados sobre classificação de Ações Anosov de Rk em (k + 2)variedades fechadas. Obtivemos dois teoremas (Teoremas A e B) que classificam tais ações. Essencialmente, mostramos que a ação será uma Tk1 extensão de um fluxo Anosov. Na demonstração é usada teoria das folheações de codimensão um; técnicas desenvolvidas por Fenley, como o estudo da ação levantada no recobrimento universal e a construção de losangos invariantes nesse espaço; bem como resultados obtidos por Maquera e Barbot, que iniciaram os estudos de Ações Anosov visando a classificação topológica destas
Title in English
On the classification on Anosov actions of R^k on (k+2)-closed manifolds
Keywords in English
Anosov actions
Anosov systems
Dynamical systems
Invariants lozenges on the cover
Irredutibility
Abstract in English
In this work is presented some important results about Anosov actions of Rk in (k + 2)closed manifolds. We obtained two classification theorems (Theorems A and B) which give us, essentially, that the system is a Tk1-extension of an Anosov flow. In order to show that, we used the theory of foliations of codimension one, techniques developed by Fenley, such as study of the lift of the action in the universal cover and the construction of invariant lozenges, what is more, we used some results by Maquera and Barbot, who began the studies of Anosov Actions generalizing some classic results on the way to classificate them
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2012-09-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.