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RESUMO

LUIZ, M. N. Variedades de Poisson quasi-Nijenhuis e estruturas de Dirac: uma abordagem
geométrica para os teoremas de deformação e involução. 2024. 101 p. Tese (Doutorado em
Ciências – Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de
São Paulo, São Carlos – SP, 2024.

Neste trabalho, analisamos a conexão entre estruturas de Poisson quase-Nijenhuis, quase-Lie
bialgebróides e algebróides de Courant. Demonstramos como deformar uma variedade de
Poisson quase-Nijenhuis usando uma 2-forma fechada dentro do contexto dos algebróides de
Courant e estruturas de Dirac. Depois, interpretamos este procedimento no contexto de super
variedades, como uma instância específica do chamado twisting de um proto-bialgebróide. Por
fim, investigamos as aplicações de variedades de Poisson quasi-Nijenhuis dentro da teoria de sis-
temas integráveis. Os principais resultados desta tese estão relatados em (LUIZ; MENCATTINI;
PEDRONI, 2024).

Palavras-chave: Variedade de Poisson quasi-Nijenhuis. Quasi-Lie bialgebroides. Estuturas de
Dirac. Twisting de um quase-Lie bialgebroid.





ABSTRACT

LUIZ, M. N. Poisson quasi-Nijenhuis manifolds and Dirac structures: A geometrical
approach to deformation and involutive theorems. 2024. 101 p. Tese (Doutorado em Ciências
– Matemática) – Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo,
São Carlos – SP, 2024.

In this work, we analyze the connection between Poisson quasi-Nijenhuis structures, quasi-Lie
bialgebroids, and Courant algebroids. We demonstrate how to deform a Poisson quasi-Nijenhuis
manifold using a closed 2-form within the context of Courant algebroids and Dirac structures.
Then, we interpret this procedure in the context of supermanifolds, as a specific instance of the
so-called twisting of a proto-bialgebroid. Finally, we investigate the applications of Poisson
quasi-Nijenhuis manifolds in the theory of integrable systems. The main results of this thesis are
reported in (LUIZ; MENCATTINI; PEDRONI, 2024).

Keywords: Poisson quasi-Nijenhuis manifolds. Quasi-Lie bialgebroids. Courant algebroids.
Dirac structures. Twists of quasi-Lie bialgebroids .
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CHAPTER

1
INTRODUCTION

The concept of integrable systems originated in physics, and the interest in it dates
back to Newton’s explicit solution of Kepler’s two-body problem in a gravitational field. Since
Newton’s work, significant progress has been made in this field.

The first formal definition of integrability emerged from Liouville’s work, linking the
existence of a sufficient number of appropriate conserved quantities with a method for solving
associated differential equations, known as quadrature methods.

In Poisson geometry, the term “system” is equivalent to “Hamiltonian systems”. These
are dynamic systems defined by a Poisson bivector and a scalar field, the latter being the system’s
Hamiltonian. One of the most important features of such systems is that the Hamiltonian is
conserved over time.

Although Liouville’s definition is somewhat restrictive, the identification of appropriate
conserved quantities yields invaluable insights into the system’s behavior. To achieve this,
numerous geometric and algebraic tools have been developed to capture the intrinsic symmetries
of these problems. The works of Lax, Noether, and Magri are notable contributions to this field.

In its simplest form (i.e., within a symplectic framework), the concept can be articulated
as it follows. Consider a 2n-dimensional symplectic manifold (M,ω) and a smooth function
H : M → R. The Hamiltonian dynamical system defined by H is completely integrable in the
Liouville sense if one can identify functions f1, . . . , fn ∈C∞(M) that:

1. Are generally independent on M, that is, d f1 ∧·· ·∧d fn = 0 in a dense subset;

2. For any pair of i, j,

{ f1, f j}= 0;

3. Include the function H, satisfying {H, fi}ω = 0 for all i = 1, . . . ,n.
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Under these conditions, the fiber Mb = F−1(b) of the momentum map F = ( f1, . . . , fn) :
M →Rn is an embedded, typically non-connected, Lagrangian submanifold of (M,ω). Assuming
the completeness of the flows generated by the fi, each connected component of Mb is diffeomor-
phic to a cylinder Tk ×Rn−k. Additionally, in the neighborhood of any such fiber, it’s possible to
introduce suitable coordinates in which the Hamiltonian flow of any Hamiltonian vector field
of fi becomes linear. This observation underscores the integrability of the Hamiltonian flow
generated by H. See, e.g., (ARNOLD, 1997).

For a (1,1) tensor field N : T M → T M, one can define its Nijenhuis torsion as

TN(X ,Y ) = [NX ,NY ]−N([NX ,Y ]+ [X ,NY ]−N[X ,Y ]).

We say that N is a Nijenhuis tensor if the Nijenhuis torsion TN vanishes. Franco Magri and
Carlo Morosi define the notion of compatibility of a Nijenhuis tensor and a Poisson structure as
follows.

For a Poisson manifold (M,π), we say that N : T M → T M and π : T ∗M → T M are
compatible if

Nπ = πN∗,

Lπ♯(α)(N)X −π
♯LX(N∗

α)+π
♯LNX(α) = 0,

for all 1-form α and vector fields X . For all X ,Y ∈ Γ(T M). Therefore, we have reached the idea
of the Poisson Nijenhuis manifold.

Definition 1.0.1. A Poisson-Nijenhuis manifold is a triple (M,π,N), where M is a differentiable
manifold, π is a Poisson tensor, and N is a Nijenhuis operator, such that π and N are compatible.

Originating in the theory of soliton equations, the notion of Lenard chain is an important
tool for constructing families of functions in involution. Let π1 and π2 be two Poisson bivectors.
A sequence of functions { f j} j∈Z is said to satisfy the Lenard recursion relations, and is called a
Lenard chain, if

π1(d f j) = π2(d f j+1) for all j ∈ Z.

A noteworthy property of the Lenard chains is that the functions f j are pairwise in involution
with respect to both Poisson brackets {·, ·}1 and {·, ·}2. See, e. g. (MAGRI; MOROSI, 1984).

The relevance of Poisson-Nijenhuis manifolds in the theory of integrable systems is
summarized in the following result:

Theorem 1.0.2. On a PN manifold, the functions fk =
1
k

trNk satisfy the Lenard recursion
relation.

The concept of Poisson quasi-Nijenhuis manifolds, defined in (STIÉNON; XU, 2007),
generalizes the notion of Poisson-Nijenhuis manifold, and it has important applications in the



19

study of generalized complex structures. Roughly speaking, it is a Poisson manifold with a
compatible (1,1)-tensor in which the vanishing of the Nijenhuis torsion is weakened in a suitable
sense. More precisely

Definition 1.0.3. A Poisson quasi-Nijenhuis manifold is a quadruple (M,π,N,φ) such that:

• the Poisson bivector π and the (1,1) tensor field N are compatible;

• the 3-forms φ and iNφ are closed;

• TN(X ,Y ) = π♯ (iX∧Y φ) for all vector fields X and Y , where iX∧Y φ is the 1-form defined as
⟨iX∧Y φ ,Z⟩= φ(X ,Y,Z).

The relation between Poisson quasi-Nijenhuis manifolds and integrable systems was
studied in (FALQUI et al., 2020). Differently from the Poisson-Nijenhuis, the functions defined
as the traces of the powers of the (1,1)-tensor do not necessarily satisfy the Lenard-Magri
relations.

Presented by (FALQUI et al., 2020), the deformation theorem of a PN manifold into a
PqN manifold is a tool that enables the construction of a new PqN manifold (M,π, N̂,φ) from a
PN manifold (M,π,N) and a closed 2-form Ω. Here,

N̂ = N +π
♯
Ω

♭,

φ = dN +[Ω,Ω]N .

This thesis provides a geometric interpretation of the results presented in (FALQUI et al.,
2020) and (FALQUI; MENCATTINI; PEDRONI, 2023) using the connections between Dirac
structures, supermanifolds, Lie algebroids, and Poisson quasi-Nijenhuis manifolds. As a result,
two generalizations of the deformation theorem are presented. The thesis is structured as follows:

Chapter 2 – Courant algebroid and Dirac structures: We introduce the concept of Courant
algebroid and discuss the equivalence between the three main definitions of Courant algebroid.
We also analyze the theory of Dirac structures in a Courant algebroid and their relations with Lie
bialgebroids.

Chapter 3 – Deformation theorem for a Poisson quasi-Nijenhuis Manifold: We introduce
the so-called Lie quasi-bialgebroids and explore their connections with Courant algebroids and
with Poisson quasi-Nijenhuis manifolds. Using the theory of Dirac structures, we demonstrate a
generalization of the deformation theorem, but now the initial manifold can be Poisson quasi-
Nijenhuis.

Chapter 4 – Dirac-Nijenhuis structures: In this chapter, we introduce the theory of Dirac-
Nijenhuis structures, a generalization of Poisson-Nijenhuis structures, and demonstrate that,
when N = Id, the deformation defines a Dirac-Nijenhuis structure.
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Chapter 5 – The big bracket formalism for the deformation theorem: In this chapter,
we discuss the theory of Courant algebroid in the context of supermanifolds and present the
definition of Poisson quasi-Nijenhuis structures in an arbitrary Lie algebroid. As a final result,
we present a deformation theorem for Poisson quasi-Nijenhuis structures in Lie algebroids.

Chapter 6 – Bi-differential calculi from a Dirac perspective and an involutivity theorem:
In this chapter, we present the connection between Poisson quasi-Nijenhuis manifolds and
integrable systems and present a Dirac approach to the involutivity theorem of (FALQUI et al.,
2020).

Appendix 1 – Differential calculus on Lie algebroids: We summarize the main results
concerning the theory of differential calculus on Lie algebroids. These results will be used
throughout the text.

The results concerning the deformation theorem are reported in (LUIZ; MENCATTINI;
PEDRONI, 2024).
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CHAPTER

2
COURANT ALGEBROID AND DIRAC

STRUCTURES

This chapter provides a comprehensive analysis of Courant algebroids and their relations
with Lie bialgebroids and Dirac structures. The definitions and results compiled in this chapter
will be used throughout the rest of this thesis.

We start by presenting the three main definitions of a Courant algebroid and illustrating
the connections between these definitions. The first one is the original definition given by (LIU;
WEINSTEIN; XU, 1997). The second is the simplification of the original definition given by
(UCHINO, 2002). The final one is the definition presented by (KOSMANN-SCHWARZBACH,
2005), using the non-skew-symmetric bracket studied by (ROYTENBERG, 1999).

Subsequently, we discuss the main result of (LIU; WEINSTEIN; XU, 1997), which
introduces Lie bialgebroids as an important example of Courant algebroids. Finally, we present
the definition of Dirac structures. All these structures will be used to demonstrate the Deformation
Theorem 3.2.9 in Chapter. 3.

2.1 Courant algebroids

In 1990, T. Courant introduced the first example of a Courant algebroid in his paper
(COURANT, 1990). These algebroids serve as a natural ambient space for Dirac structures, which
are geometric objects that extend the idea of pre-symplectic and Poisson structures. Roughly
speaking, Courant algebroids are vector bundles equipped with a non-degenerate symmetric
bilinear form and a bracket operation on sections that satisfy a set of axioms.

Let E → M be a vector bundle equipped with a non-degenerate symmetric bilinear
form ⟨· | ·⟩, a skew-symmetric bracket J·, ·K on Γ(E) and a bundle map ρ : E → T M. Given
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e1,e2,e3 ∈ Γ(E), we define T (e1,e2,e3) as the function on C∞(M) given by:

T (e1,e2,e3) =
1
3
(⟨Je1,e2K | e3⟩+ ⟨Je2,e3K | e1⟩+ ⟨Je3,e1K | e2⟩) ,

and D : C∞(M) −→ Γ(E) as the map defined by D = 1
2β−1ρ∗d, where β is the isomorphism

between E and E∗ given by the bilinear form. In other words,

⟨D f | e⟩= 1
2

ρ(e)( f ). (2.1)

For every e1,e2,e3 ∈ Γ(E), we define the Jacobiator J : Γ(E)×Γ(E)×Γ(E)→ Γ(E) by

J(e1,e2,e3) = JJe1,e2K,e3K+ JJe2,e3K,e1K+ JJe3,e1K,e2K. (2.2)

Remark 2.1.1. We denote the non-degenerate symmetric bilinear form on sections of E by ⟨· | ·⟩
to avoid confusion with the usual pairing between vector fields and 1-forms. There is a similar
notation in (KOSMANN-SCHWARZBACH, 2005).

2.1.1 First definition

The first definition of a Courant algebroid in an abstract context was presented in (LIU;
WEINSTEIN; XU, 1997). This definition generalizes the structure studied by Courant and
provides a framework for defining Dirac structures in a more general context.

Definition 2.1.2 ((LIU; WEINSTEIN; XU, 1997), Definition 2.1). A Courant algebroid is a
vector bundle E → M equipped with a non-degenerate symmetric bilinear form ⟨· | ·⟩ on the
bundle, a skew-symmetric bracket J·, ·K on Γ(E) and a bundle map ρ : E → T M satisfying the
following properties:

(1) for any e1,e2,e3 ∈ Γ(E),
J(e1,e2,e3) = DT (e1,e2,e3);

(2) for any e1,e2 ∈ Γ(E),
ρJe1,e2K = [ρ(e1),ρ(e2)];

(3) for any e1,e2 ∈ Γ(E) and f ∈C∞(M),

Je1, f e2K = f Je1,e2K+(ρ(e1) f )e2 −⟨e1 | e2⟩D f ;

(4) for any f ,g ∈C∞(M), ρ ◦D = 0, that is,

⟨D f | Dg⟩= 0;

(5) for any e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨Je,e1K+D⟨e | e1⟩ | e2⟩+ ⟨e1 | Je,e2K+D⟨e | e2⟩⟩.
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Courant presented the following example in (COURANT, 1990).

Example 2.1.3 (Standard Courant algebroid). If E = T M ⊕T ∗M is equipped with the skew-
symmetric bracket

JX ⊕α,Y ⊕β K = [X ,Y ]⊕
(

LX(β )−LY (α)+
1
2

d(α(Y )−β (X))

)
,

the pairing ⟨X ⊕α | Y ⊕β ⟩= α(Y )+β (X), and the anchor ρ(X ⊕α) = X , then E is a Courant
algebroid. In this case, we have that, for all f ∈C∞(M),

D f =
1
2

d f .

The following lemma, as demonstrated in (ROYTENBERG, 1999), establishes that the
set of sections of E which are D f for some function forms an ideal of the algebra J·, ·K.

Lemma 2.1.4. For any e ∈ Γ(E), f ∈C∞(M) one has

Je,D f K = D⟨e | D f ⟩. (2.3)

Proof. By Property 5, we have that, for D f ,e1,e2 ∈ Γ(E),

ρ(D f )⟨e1,e2⟩= ⟨JD f ,e1K+D⟨D f | e1⟩ | e2⟩+ ⟨e1 | JD f ,e2K+D⟨D f | e2⟩⟩

ρ(e1)⟨e2,D f ⟩= ⟨Je1,e2K+D⟨e1 | e2⟩ | D f ⟩+ ⟨e2 | Je1,D f K+D⟨e1 | D f ⟩⟩

ρ(e2)⟨D f ,e1⟩= ⟨Je2,D f K+D⟨e2 | D f ⟩ | e1⟩+ ⟨D f | Je2,e1K+D⟨e2 | e1⟩⟩.

Add the first two equations and subtract the third. After manipulating the expression, we have
that

ρ (Je1,e2K) f = ⟨D f | 4Je1,e2K⟩+ ⟨e1 | 4JD f ,e2K⟩+ ⟨e2 | 4D⟨D f | e1⟩⟩.

Using the definition of D, we have that

0 = ρ (Je1,e2K) f + ⟨e1 | 4JD f ,e2K⟩+2ρ(e2)⟨e1 | D f ⟩

= ρ (Je1,e2K) f + ⟨e1 | 4JD f ,e2K⟩+ρ(e2)(ρ(e1) f )

= ρ(e1)(ρ(e2) f )+ ⟨e1 | 4JD f ,e2K⟩

= ⟨e1 | 2D(ρ(e2) f )+4JD f ,e2K⟩

= ⟨e1 | 4D⟨e2 | D f ⟩+4JD f ,e2K⟩

Since ⟨· | ·⟩ is non-degenerate, the statement holds.

2.1.2 Second definition

Later, the definition of Courant algebroid was studied and simplified by (ROYTENBERG,
1999) and (UCHINO, 2002). In the latter, the author shows that the number of axioms in the
definition of Courant algebroid can be reduced. Now, we will present those results.
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Proposition 2.1.5 ((UCHINO, 2002), Proposition 1). Let E → M be a vector bundle equipped
with:

• a non-degenerate symmetric bilinear form ⟨· | ·⟩;

• a skew-symmetric bracket J·, ·K;

• a bundle map ρ : E → T M;

• a map D : C∞(M)→ Γ(E).

If

(i) for any e1,e2 ∈ Γ(E),
ρJe1,e2K = [ρ(e1),ρ(e2)];

(ii) for all f ,g ∈C∞(M),
D( f g) = f D(g)+gD( f );

(iii) for any e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨Je,e1K+D⟨e | e1⟩ | e2⟩+ ⟨e1 | Je,e2K+D⟨e | e2⟩⟩;

then

(iv) for any e1,e2 ∈ Γ(E) and f ∈C∞(M),

Je1, f e2K = f Je1,e2K+(ρ(e1) f )e2 −⟨e1 | e2⟩D f ;

(v) for any f ,g ∈C∞(M),
⟨D f | Dg⟩= 0.

Proof. First, we will show (iv). Through (iii)

ρ(e1)⟨ f e2 | e⟩= ⟨Je1, f e2K+D⟨e1 | f e2⟩ | e⟩+ ⟨ f e2 | Je1,eK+D⟨e1 | e⟩⟩.

On the other hand, applying the Leibniz rule for the vector field, we have that

ρ(e1)⟨ f e2 | e⟩= f ρ(e1)⟨e2 | e⟩+ ⟨e2 | e⟩ρ(e1)( f ).

Applying (iii) on ρ(e1)⟨e2 | e⟩, we have that

ρ(e1)⟨ f e2 | e⟩= ⟨ f Je1,e2K+ f D⟨e1 | e2⟩ | e⟩+ ⟨ f e2 | Je1,eK+D⟨e1 | e⟩⟩+ ⟨e2 | e⟩ρ(e1)( f ).

Thus,

⟨ f Je1,e2K+ f D⟨e1 | e2⟩ | e⟩+ ⟨e2 | e⟩ρ(e1)( f ) = ⟨Je1, f e2K+D⟨e1 | f e2⟩ | e⟩.
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Since the bilinear form ⟨· | ·⟩ is non-degenerate, we have that

f Je1,e2K+ f D⟨e1 | e2⟩+ρ(e1)( f )e2 = Je1, f e2K+D⟨e1 | f e2⟩.

Applying (ii), we have that

D⟨e1 | f e2⟩= f D⟨e1 | e2⟩+ ⟨e1 | e2⟩D f .

And, finally, we obtained (iv)

Je1, f e2K = f Je1,e2K+ρ(e1)( f )e2 −⟨e1 | e2⟩D f .

Now, we show (v). By (i), we have that

ρJe1, f e2K = [ρ(e1), f ρ(e2)] = f [ρ(e1),ρ(e2)]+ρ(e1)( f )ρ(e2).

Applying ρ in (iv), we have that
⟨e1 | e2⟩ρ(D f ) = 0

for all e1,e2 ∈ Γ(E) and f ∈C∞( f ). Then, we concluded that

ρ ◦D = 0.

The following proposition gives an expression to the map D.

Proposition 2.1.6 ((UCHINO, 2002), Proposition 2 ). Under the conditions of Proposition 2.1.5,
we have that

⟨D f | e⟩= 1
2

ρ(e)( f ) (2.4)

for all e ∈ Γ(E) and f ∈C∞(M).

Proof. For e = 0, the identity holds. Let us prove it for e ̸= 0. By (iii), we have that

ρ( f e1)⟨e | e⟩= ⟨J f e1,eK+D⟨ f e1 | e⟩ | e⟩+ ⟨J f e1,eK+D⟨ f e1 | e⟩ | e⟩.

Applying (iv) and (ii), we have

ρ( f e1)⟨e | e⟩=2⟨ f Je1,eK−ρ(e)( f )e1 + ⟨e1 | e⟩D f + f D⟨e1 | e⟩+ ⟨e1 | e⟩D f | e⟩

=2 f ⟨Je1,eK+D⟨e1 | e⟩ | e⟩−2⟨ρ(e)( f )e1 −2⟨e1 | e⟩D f | e⟩.

And, applying (iii) again, we got that

ρ( f e1)⟨e | e⟩= f ρ(e1)⟨e | e⟩−2⟨ρ(e)( f )e1 −2⟨e1 | e⟩D f | e⟩.

Thus

0 = ⟨−ρ(e)( f )e1 +2⟨e1 | e⟩D f | e⟩=−ρ(e)( f )⟨e1 | e⟩+2⟨e1 | e⟩⟨D f | e⟩.
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Since ⟨· | ·⟩ is non-degenerate, we have that

(−ρ(e)( f )+2⟨D f | e⟩)⟨e1 | e⟩= 0 =⇒ ⟨D f | e⟩= 1
2

ρ(e)( f )

Note that if we define D by (2.1), then D satisfies (ii). Thus, through the work of
(UCHINO, 2002), Definition 2.1.2 is equivalent to the following.

Definition 2.1.7. A Courant algebroid is a vector bundle E → M endowed with a non-degenerate
symmetric bilinear form ⟨· | ·⟩, a skew-symmetric bracket J·, ·K and a bundle map ρ : E → T M

satisfying the following properties:

(C1) For any e1,e2,e3 ∈ Γ(E),

J(e1,e2,e3) = DT (e1,e2,e3);

(C2) for any e1,e2 ∈ Γ(E),

ρJe1,e2K = [ρ(e1),ρ(e2)];

(C3) for any e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨Je,e1K+D⟨e | e1⟩ | e2⟩+ ⟨e1 | Je,e2K+D⟨e | e2⟩⟩,

where J is given by Equation (2.2) and D is given by Equation (2.1).

2.1.3 Third definition

One notable fact about the definition of Courant algebroid is that the bracket J·, ·K do not
satisfy the Jacobi identity. In (LIU; WEINSTEIN; XU, 1997), the authors propose a new bracket
defined by

Je1,e2KJ = Je1,e2K+D⟨e1 | e2⟩. (2.5)

This new bracket satisfies the Jacoby identity, but the price to pay is that it is not skew-symmetric.
In (ROYTENBERG, 1999), another equivalent definition of Courant algebroid is presented in
terms of the bracket J·, ·KJ . Now, we will use the ideas of (UCHINO, 2002), presented in Section
2.1.2, and (ROYTENBERG, 1999) to show the equivalence between Definition 2.1.2 and the
one presented in (KOSMANN-SCHWARZBACH, 2005).

Definition 2.1.8 ((KOSMANN-SCHWARZBACH, 2005), Definition 2.1). A Courant algebroid
is a vector bundle E → M together with a non-degenerate symmetric bilinear form ⟨· | ·⟩, a
bilinear operation J·, ·KJ , and a bundle map ρ : E → T M satisfying the following properties:
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(J1) For any e1,e2,e3 ∈ Γ(E),

Je1,Je2,e3KJKJ = JJe1,e2KJ,e3KJ + Je2,Je1,e3KJKJ;

(J2) for any e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨e | Je1,e2KJ + Je2,e1KJ⟩;

(J3) for any e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨Je,e1KJ | e2⟩+ ⟨e1 | Je,e2KJ⟩.

Remark 2.1.9. Note that Property (J2) is equivalent to

2D⟨e1 | e2⟩= Je1,e2KJ + Je2,e1KJ. (2.6)

Indeed, taking the bilinear form ⟨· | ·⟩ between the above equation and an arbitrary e ∈ Γ(E), we
can recover (J2).

The following lemma gives us the relation between the brackets introduced in Definition
2.1.8 and 2.1.2.

Lemma 2.1.10. Let J·, ·KJ satisfy

(J2) ρ(e)⟨e1 | e2⟩= ⟨e | Je1,e2KJ + Je2,e1KJ⟩;

Then,
Je1,e2KJ = Je1,e2K+D⟨e1 | e2⟩, (2.7)

where
Je1,e2K =

1
2
(
Je1,e2KJ − Je2,e1KJ) . (2.8)

In other words, the symmetric part of Je1,e2KJ is D⟨e1 | e2⟩.

Proof. The idea is the same as polarization identity. Equation (2.6) implies

2Je1,e2KJ = 2D⟨e1 | e2⟩+
(
Je1,e2KJ − Je2,e1KJ) .

Thus
Je1,e2KJ = D⟨e1 | e2⟩+

1
2
(
Je1,e2KJ − Je2,e1KJ) .

Similar to what was done in the work of (UCHINO, 2002) for the first definition,
(KOSMANN-SCHWARZBACH, 2005) simplifies the definition of (ROYTENBERG, 1999).

Proposition 2.1.11. The following conditions
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(J1) For any e1,e2,e3 ∈ Γ(E),

Je1,Je2,e3KJKJ = JJe1,e2KJ,e3KJ + Je2,Je1,e3KJKJ;

(J3) for all e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨Je,e1KJ | e2⟩+ ⟨e1 | Je,e2KJ⟩

imply

(J4) for any e1,e2 ∈ Γ(E),
ρJe1,e2KJ = [ρ(e1),ρ(e2)];

(J5) for any e1,e2 ∈ Γ(E) and f ∈C∞(M),

Je1, f e2KJ = f Je1,e2KJ +(ρ(e1) f )e2.

Proof. First, we will prove the property (J5). By the Leibniz rule for vector fields, we have that

ρ(e1)⟨ f e2 | e⟩= (ρ(e1) f )⟨e2 | e⟩+ f (ρ(e1)⟨e2 | e⟩) .

Using the property (J3), we have that

⟨Je1, f e2KJ | e⟩+ ⟨ f e2 | Je1,eKJ⟩= (ρ(e1) f )⟨e2 | e⟩+ f ⟨Je1,e2KJ | e⟩+ f ⟨e2 | Je1,eKJ⟩.

Thus,
⟨Je1, f e2KJ | e⟩= (ρ(e1) f )⟨e2 | e⟩+ f ⟨Je1,e2KJ | e⟩.

Since ⟨· | ·⟩ is non-degenerate, we have the property (J5).

For the property (J4), by (J1), we have that

Je1,Je2, f eKJKJ = JJe1,e2KJ, f eKJ + Je2,Je1, f eKJKJ.

Using the property (J5), we have that

Je1,Je2, f eKJKJ = f Je1,Je2,eKJKJ +(ρ(e1) f )Je2,eKJ +(ρ(e2) f )Je1,eKJ +(ρ(e1)(ρ(e2) f ))e

JJe1,e2KJ, f eKJ = f JJe1,e2KJ,eKJ +(ρ(Je1,e2KJ) f )e

Je2,Je1, f eKJKJ = f Je2,Je1,eKJKJ +(ρ(e2) f )Je1,eKJ +(ρ(e1) f )Je2,eKJ +(ρ(e2)(ρ(e1) f ))e

Using again (J1), we have that

(ρ(Je1,e2KJ) f )e = (ρ(e1)(ρ(e2) f ))e− (ρ(e2)(ρ(e1) f ))e.

Thus, we have the property (J4).
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Similar to Lemma 2.1.4, (ROYTENBERG, 1999) shows that the set of sections of E
which are D f for some function forms an ideal of the algebra J·, ·KJ .

Lemma 2.1.12. If (E,⟨· | ·⟩,J·, ·KJ,ρ) satisfies

(J3) for all e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨Je,e1KJ | e2⟩+ ⟨e1 | Je,e2KJ⟩;

(J4) for any e1,e2 ∈ Γ(E),
ρJe1,e2K = [ρ(e1),ρ(e2)],

then, for all e ∈ Γ(E) and f ∈C∞(M), we have that

Je,D f KJ = 2D⟨e | D f ⟩

JD f ,eKJ = 0.

Proof. Given e1,e2 ∈ Γ(E), by the definition of D and (J3), we have that

ρ(e1)(ρ(e2) f ) = 2ρ(e1)⟨D f | e2⟩= 2⟨Je1,D f KJ | e2⟩+2⟨D f | Je1,e2KJ⟩

= 2⟨Je1,D f KJ | e2⟩+ρ
(
Je1,e2KJ) f ,

by (J4), we have that

ρ
(
Je1,e2KJ) f = [ρ(e1),ρ(e2)]( f ) = ρ(e1)(ρ(e2) f )−ρ(e2)(ρ(e1) f ).

Thus,
⟨Je1,D f KJ | e2⟩=

1
2

ρ(e2)(ρ(e1) f ) = 2⟨e2 | D⟨e1 | D f ⟩⟩.

Since ⟨· | ·⟩ is non-degenerate, we have

Je,D f KJ = 2D⟨e | D f ⟩.

On the other hand,

JD f ,eKJ = JD f ,eKJ + Je,D f KJ − Je,D f KJ

= JD f ,eK+D⟨D f | e⟩+ Je,D f K+D⟨e | D f ⟩− Je,D f KJ.

Since Je,D f KJ = 2D⟨e | D f ⟩, we have that

JD f ,eKJ = 2D⟨e | D f ⟩−2D⟨e | D f ⟩= 0.

The following lemma will be used to show the equivalence between Property (1) for
Definition 2.1.2 and Property (J1) of Definition 2.1.8.
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Lemma 2.1.13. If (E,⟨· | ·⟩,J·, ·KJ,ρ) satisfies

(J2) for any e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨e | Je1,e2KJ + Je2,e1KJ⟩;

(J3 ) for any e,e1,e2 ∈ Γ(E),

ρ(e)⟨e1 | e2⟩= ⟨Je,e1KJ | e2⟩+ ⟨e1 | Je,e2KJ⟩,

then,

K(e1,e2,e3) = JJe1,e2KJ,e3KJ + Je2,Je1,e3KJKJ − Je1,Je2,e3KJKJ

is completely skew-symmetric.

Proof. We will show that if two entries coincide, then K vanishes. Indeed, first note that Equation
(2.5) implies that

Je,eKJ = D⟨e | e⟩,

thus

K(e1,e1,e3) = JJe1,e1KJ,e3KJ + Je1,Je1,e3KJKJ − Je1,Je1,e3KJKJ = JD⟨e1 | e1⟩,e3KJ.

Through Lemma 2.1.12 we have

K(e1,e1,e3) = 0.

On the other hand, by (J2)

K(e1,e2,e2) = JJe1,e2KJ,e2KJ + Je2,Je1,e2KJKJ − Je1,Je2,e2KJKJ

= 2D
(
⟨Je1,e2KJ | e2⟩

)
− Je1,Je2,e2KJKJ.

Through Lemma 2.1.12 we have

Je1,Je2,e2KJKJ = Je1,D⟨e2 | e2⟩KJ = 2D⟨e1 | D⟨e2 | e2⟩⟩= ρ(e1)(⟨e2 | e2⟩),

and by (J2)

ρ(e1)(⟨e2 | e2⟩) = 2D
(
⟨Je1,e2KJ | e2⟩

)
.

Thus

K(e1,e2,e2) = 2D
(
⟨Je1,e2KJ | e2⟩

)
−2D

(
⟨Je1,e2KJ | e2⟩

)
= 0.
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And finally, using again (J2), (J3) and Lemma 2.1.12, we have that

K(e1,e2,e1) = JJe1,e2KJ,e1KJ + Je2,Je1,e1KJKJ − Je1,Je2,e1KJKJ

= JJe1,e2KJ,e1KJ + Je2,Je1,e1KJKJ − Je1,Je2,e1KJKJ

+ JJe2,e1KJ,e1KJ − JJe2,e1KJ,e1KJ

= 2JD⟨e1 | e2⟩,e1KJ −2D⟨Je2,e1KJ | e1⟩+2D⟨e2 | Je1,e1KJ⟩

=−2D
(
⟨Je2,e1KJ | e1⟩−⟨e2 | Je1,e1KJ⟩

)
=−2D

(
⟨Je2,e1KJ | e1⟩+ ⟨Je1,e2KJ | e1⟩−2⟨D⟨e2 | e1⟩ | e1⟩

)
=−2D(2⟨D⟨e2 | e1⟩ | e1⟩−2⟨D⟨e2 | e1⟩ | e1⟩)

= 0

We can state the equivalence between Property (1) and Property (J1) in the following
way:

Proposition 2.1.14. Let E → M be a vector bundle endowed with a non-degenerate symmetric
bilinear form ⟨· | ·⟩ and a bundle map ρ : E → T M. Let J·, ·K, satisfying Properties 2-5, and J·, ·KJ ,
satisfying Properties (J2) and (J3), be two brackets on the sections of E related by Lemma 2.1.3.
Then J·, ·K satisfies Property (1) if and only if J·, ·KJ satisfies Property (J1).

Proof. By Equation (2.7), we have that

H(e1,e2,e3) = J(e1,e2,e3)+R(e1,e2,e3),

where

R(e1,e2,e3) =
1
2
(JD⟨e1 | e2⟩,e3K+ Je2,D⟨e1 | e3⟩K− Je1,D⟨e2 | e3⟩K)

+
1
2

D
(
⟨Je1,e2KJ | e3⟩+ ⟨e2 | Je1,e3KJ⟩−⟨e1 | Je2,e3KJ⟩

)
.

But, applying Lemma 2.1.4, we have

1
2
(JD⟨e1 | e2⟩,e3K+ Je2,D⟨e1 | e3⟩K− Je1,D⟨e2 | e3⟩K)

=−1
2

D(⟨D⟨e1 | e2⟩ | e3⟩−⟨e2 | D⟨e1 | e3⟩⟩+ ⟨e1 | D⟨e2 | e3⟩⟩) ,

and

1
2

D(⟨Je1,e2KJ | e3⟩+ ⟨e2 | Je1,e3KJ⟩−⟨e1 | Je2,e3KJ⟩)

=
1
2

D(⟨Je1,e2K | e3⟩+ ⟨e2 | Je1,e3K⟩−⟨e1 | Je2,e3K⟩)

+
1
2

D(⟨D⟨e1 | e2⟩ | e3⟩+ ⟨e2 | D⟨e1 | e3⟩⟩−⟨e1 | D⟨e2 | e3⟩⟩),
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then

R(e1,e2,e3) =
1
2

D(⟨Je1,e2K | e3⟩−⟨Je3,e1K | e2⟩−⟨Je2,e3K | e1⟩)

+D(⟨e2 | D⟨e1 | e3⟩⟩−⟨e1 | D⟨e2 | e3⟩⟩) .

Since J and H are completely skew-symmetric, so is R. The result follows since the skew-
symmetrization of R is equal to −DT (e1,e2,e3).

Proposition 2.1.15. Let (E,⟨· | ·⟩,J·, ·K,ρ) be a Courant algebroid in the sense of Definition
2.1.2. Then (E,⟨· | ·⟩,J·, ·KJ,ρ) is a Courant algebroid in the sense of Definition 2.1.8, where
J·, ·KJ is given by Equation (2.5).

Conversely, if (E,⟨· | ·⟩,J·, ·KJ,ρ) is a Courant algebroid in the sense of Definition 2.1.8,
then (E,⟨· | ·⟩,J·, ·K,ρ) is a Courant algebroid in the sense of Definition 2.1.2, where J·, ·K is
given by Equation (2.8).

Proof. Suppose that (E,⟨· | ·⟩,J·, ·KJ,ρ) is a Courant algebroid in the sense of Definition 2.1.8.
The condition (5) of Definition 2.1.2 is clearly equivalent to (J3), and, by Proposition 2.1.14,
we have the equivalence between (J1) and (1). Now, for Property (2), we have that

ρJe1,e2K =
1
2

ρ
(
Je1,e2KJ − Je2,e1KJ)

=
1
2
(
ρJe1,e2KJ −ρJe2,e1KJ)

=
1
2
([ρ(e1),ρ(e2)]− [ρ(e2),ρ(e1)])

= [ρ(e1),ρ(e2)].

Thus, Property (J4) implies Property (2), and the results follows from Proposition 2.1.5.

On the other hand, suppose that (E,⟨· | ·⟩,J·, ·K,ρ) is a Courant algebroid in the sense of
Definition 2.1.2. Again, we have that Properties (J1) and (J3) hold. By Equation (2.7), we have
that

Je1,e2KJ = Je1,e2K+D⟨e1 | e2⟩

Je2,e1KJ = Je2,e1K+D⟨e1 | e2⟩,

thus, we have that

2D⟨e1 | e2⟩= Je1,e2KJ + Je2,e1KJ.

Example 2.1.16. For the Example 2.1.3, we have that the new bracket is given by

JX ⊕α,Y ⊕β KJ = [X ,Y ]⊕ (LX(β )− iY dα) .
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2.2 Lie bialgebroids
Another important instance of Courant algebroid, which has numerous applications in

the study of Poisson-Nijenhuis manifolds and Dirac structures, is the one defined by the double
of a Lie bialgebroid. A Lie bialgebroid is a framework introduced by (MACKENZIE; XU, 1994)
that extends the concept of Lie bialgebra. It consists of two Lie algebroids, denoted by A and A∗,
over a manifold M, satisfying some suitable compatibility conditions.

Remark 2.2.1. In this section, we will use results from the theory of differential calculus on Lie
algebroids. Details can be found in the Appendix A.

Definition 2.2.2. Let (A, [·, ·]A,ρA) be a Lie algebroid and let dA∗ be a degree 1 derivation of
(Γ(∧•A),∧). We say that (A,dA∗) is a Lie bialgebroid if the following equations hold

dA∗[P,Q]A = [dA∗P,Q]A +(−1)p−1[P,dA∗Q]A (2.9)

d2
A∗ = 0 (2.10)

for all P ∈ ∧pA and Q ∈ ∧•A.

Remark 2.2.3. Algebraically, a Lie bialgebroid corresponds to a differential Gerstenhaber
algebra. See Appendix A.

Remark 2.2.4. Exploring the relation between Lie algebroid structures and differential operators
dA∗ satisfying d2

A∗ = 0, a Lie bialgebroid can be alternatively defined requiring two Lie algebroids
(A, [·, ·]A,ρA) and (A∗, [·, ·]A∗,ρA∗) that are compatible in the sense of Equation (2.9).

A simple example of Lie bialgebroid is provided by the pair (T M,T ∗M), where the
tangent bundle carries its canonical structure of Lie algebroid, i.e., (T M, Id, [·, ·]), while T ∗M

carries the trivial Lie algebroid structure, i.e., the one with zero anchor and trivial bracket.
A less trivial example of Lie bialgebroid is provided again by the pair (T M,T ∗M), where
M is a PN manifold, in the sense of (MAGRI; MOROSI; RAGNISCO, 1985; KOSMANN-
SCHWARZBACH; MAGRI, 1990).

Definition 2.2.5. Let N : T M → T M be a (1,1)-tensor on a manifold M. We define the Nijehuis
torsion of N by

TN(X ,Y ) = [NX ,NY ]−N ([NX ,Y ]+ [X ,NY ]−N[X ,Y ]) .

We say that N is a Nijenhuis operator, or a Nijenhuis tensor, if TN = 0.

Definition 2.2.6. Let π be a Poisson bivector and N be a Nijenhuis operator. We call the triple
(M,π,N) a Poisson-Nijenhuis manifold, PN manifold from now on, if π and N are compatible,
that is, for all α,β ∈ Γ(T ∗M)

Nπ
♯ = π

♯N∗, [α,β ]Nπ = [N∗
α,β ]π +[α,N∗

β ]π −N[α,β ]π . (2.11)
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Lemma 2.2.7 ((KOSMANN-SCHWARZBACH, 1996), Proposition 3.2). Assume that π ∈
∧2T M is a Poisson tensor and N : T M → T M a (1,1)-tensor on M. The differential dN is a
derivation of the graded Lie algebra (∧•T ∗M, [·, ·]π) if, and only if, π and N are compatible.

Proof. We must to show that, given σ1 ∈ ∧pT ∗M and σ2 ∈ ∧•T ∗M,

A(σ1,σ2) = dN [σ1,σ2]π − [dNσ1,σ2]π − (−1)p+1[σ1,dNσ2]π = 0.

For f ,g ∈C∞(M),

A( f ,g) =− [N∗d f ,g]π +[ f ,N∗dg]π =−⟨d f ,π♯N∗d f ⟩−⟨d f ,π♯N∗dg⟩

=⟨d f ,(Nπ
♯−π

♯N∗)dg⟩.

Thus A( f ,g) = 0 is equivalent to Nπ♯dg = π♯N∗dg . Now, we compute A(d f ,g). To this aim,
we use the fact that d is a derivation of [·, ·]π .

A(d f ,g) =dN [d f ,g]π − [dNd f ,g]π +[d f ,dNg]π

=N∗[d f ,dg]π +[d(N∗d f ),g]π − [d f ,N∗dg]π

=N∗[d f ,dg]π − [N∗d f ,dg]π − [d f ,N∗dg]π +d[N∗d f ,g]π

=C(π,N)(d f ,dg)− [d f ,dg]NP +d⟨dg,π♯N∗d f ⟩

=C(π,N)(d f ,dg)−d⟨dg,(Nπ
♯−π

♯N∗)d f ⟩

=C(π,N)(d f ,dg)+d(A( f ,g)),

where C(π,N)(d f ,dg) = [α,β ]π − ([N∗α,β ]π +[α,N∗β ]π −N[α,β ]π). Thus A(d f ,g) = 0 is
equivalent to 2.11 evaluated on exact 1-forms. Finally, we compute

A(d f ,dg) = dN [d f ,dg]π − [dNd f ,dg]π − [d f ,dNdg]π

= d(N∗[d f ,dg]π − [d(N∗d f ),dg]π − [d f ,dN∗dg]π .

=−d(N∗[d f ,dg]π)+d[N∗d f ,dg]π +d[d f ,N∗dg]π

=−d(C(π,N)(d f ,dg))−d[d f ,dg]Nπ

=−d(C(π,N)(d f ,dg)).

Then, we have the following relation between PN manifolds and Lie biagebroids.

Theorem 2.2.8. Let N be a Nijenhuis operator and π be a Poisson bivector field such that
Nπ♯ = π♯N∗. Then, (T M,N, [·, ·]N) and (T ∗M,π, [·, ·]π) form a Lie bialgebroid if and only if
(M,π,N) is a PN manifold.

Let (A,A∗) be a Lie bialgebroid It is possible to define a Courant algebroid structure on
E = A⊕A∗. We start defining two non-degenerate bilinear forms on E by

⟨X1 ⊕ξ1 | X2 ⊕ξ2⟩+ = (⟨ξ1,X2⟩+ ⟨ξ2,X1⟩) ,
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⟨X1 ⊕ξ1 | X2 ⊕ξ2⟩− = (⟨ξ1,X2⟩−⟨ξ2,X1⟩) ,

and a bracket on Γ(E) as follows:

JX1 ⊕ξ1,X2 ⊕ξ2K =
(
[X1,X2]A +Lξ1

(X2)−Lξ2
(X1)−

1
2

dA∗(⟨X1 ⊕ξ1 | X2 ⊕ξ2⟩−
)

⊕
(
[ξ1,ξ2]A∗ +LX1(ξ2)−LX2(ξ1)+

1
2

dA(⟨X1 ⊕ξ1 | X2 ⊕ξ2⟩−
)
.

(2.12)

Finally, let ρ : E → T M be the bundle map defined by

ρ(X ⊕ξ ) = ρA(X)+ρA∗(ξ )

and D : C∞(M)→ E defined by
D = dA∗ ⊕dA.

Without assuming that the pair (A,A∗) is a Lie bialgebroid, the author computes the
following expression for the Jacobiator associated with the bracket defined in 2.12, see Theorem
3 of (LIU; WEINSTEIN; XU, 1997).

Proposition 2.2.9. Let (A, [·, ·]A,ρA) and (A∗, [·, ·]A∗,ρA∗) be both Lie algebroids. Then, for every
ei = Xi ⊕αi ∈ Γ(A⊕A∗), i = 1,2,3, we have that

J(e1,e2,e3) = DT (e1,e2,e3)− (J1 + J2 + c.p),

where

J1 =iα3

(
dA∗[X1,X2]A −L A

X1
(dA∗X2)+L A

X2
(dA∗X1)

)
⊕ iX3

(
dA[α1,α2]A∗ −L A∗

α1
(dAα2)+L A∗

α2
(dAα1)

)
,

J2 =L A
dA⟨e1|e2⟩−(X3)+ [dA∗⟨e1 | e2⟩−,X3]A

⊕L A
dA∗⟨e1|e2⟩−(α3)+ [dA⟨e1 | e2⟩−,α3]A∗

and c.p means the cyclic permutations.

In (LIU; WEINSTEIN; XU, 1997), it was proved that the double of a Lie bialgebroid,
together with the above structure, is a Courant algebroid.

Theorem 2.2.10. If (A,A∗) is a Lie bialgebroid, then E = A⊕A∗ together with (J·, ·K,ρ,⟨· | ·⟩+)
is a Courant algebroid.

This statement can be proven by ensuring the five properties described in Definition
2.1.2 hold true. To make this process more organized, we have decided to draft the demonstra-
tion of each of these five properties as a separate proposition. Our approach will follow the
demonstrations presented in (LIU; WEINSTEIN; XU, 1997).
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Regarding Property (1), it is proved after straightforward computations that if (A,A∗) is
a Lie bialgebroid, then J1 + J2 + c.p. = 0. Thus, the results follow from Proposition 2.2.9. The
next proposition demonstrates that Property (2) is valid.

Proposition 2.2.11. For any f ∈C∞(M) and e1,e2 ∈ Γ(A⊕A∗), we have that

Je1, f e2K = f Je1,e2K+(ρ(e1) f )e2 −⟨e1 | e2⟩D f

Proof. Since e1 = X1⊕α1 and e2 = X2⊕α2 for X1,X2 ∈ Γ(A) and α1,α2 ∈ Γ(A∗), we have that

JX1, f X2K = f [X1,X2]A +(ρA(X1) f )X2;

JX1, f α2K = f JX1,α2K+(ρA(X1) f )α2 −
1
2
⟨X1,α2⟩D f ;

Jα1, f X2K = f Jα1,X2K+(ρA∗(α1) f )X2 −
1
2
⟨X2,α1⟩D f ;

Jα1, f α2K = f [α1,α2]A∗ +(ρA∗(α1) f )α2.

The result follows using the bilinearity of J·, ·K.

The following proposition shows that Property (3) holds.

Proposition 2.2.12. For any e1,e2 ∈ Γ(A⊕A∗), we have

ρJe1,e2K = Jρ(e1),ρ(e2)K.

Proof. Let e1 = X1 ⊕α1 and e2 = X2 ⊕α2 for X1,X2 ∈ Γ(A) and α1,α2 ∈ Γ(A∗).

ρJe1,e2K = ρA

(
[X1,X2]A +L A∗

α1
(X2)−L A∗

α2
(X1)−dA∗⟨e1 | e2⟩−

)
+ρA∗

(
[α1,α2]A∗ +L A

X1
(α2)−L A

X2
(α1)+dA⟨e1 | e2⟩−

)
.

Since (A, [·, ·]A,ρA) and (A∗, [·, ·]A∗,ρA∗) are Lie algebroids, we must check that, for all X ∈ Γ(A)

and α ∈ Γ(A∗),

[ρA(X),ρA∗(α)] = ρA∗(L A
X (α))−ρA(L

A∗
α (X))+ρAρ

∗
A∗dA⟨α,X⟩.

Indeed, for any f ∈C∞(M),

(ρAρ
∗
A∗dA⟨α,X⟩)( f ) = ⟨dA∗⟨α,X⟩,dA f ⟩

= L A∗
dA f (⟨α,X⟩)

= ⟨L A
dA∗ f (α),X⟩+ ⟨α,L A∗

dA f (X)⟩.

Since L A∗
dA f (X) = [X ,dA∗ f ]A, see Proposition 3.4 of (MACKENZIE; XU, 1994), we have that

(ρAρA∗dA⟨α,X⟩)( f ) =−⟨L A∗
α (dA f ),X⟩+ ⟨α, [X ,dA∗ f ]A⟩

= [ρA(X),ρA∗(α)]( f )−ρA∗(L A
X (α)) f +ρA(L

A∗
α (X)) f .



2.3. Dirac structures 37

For property (iv), we have that, for all f ,g ∈C∞(M),

⟨D f ,Dg⟩= ⟨dA f ,dA∗g⟩+ ⟨dA∗ f ,dAg⟩= ⟨ρA∗ ◦ρ
∗
A(d f ),dg⟩+ ⟨d f ,ρA∗ ◦ρ

∗
A(dg)⟩.

Thus, property (iv) is equivalent to the operator ρA∗ ◦ρ∗
A : T ∗M → T M being skew symmetric.

In (MACKENZIE; XU, 1994), the authors proved the following proposition.

Proposition 2.2.13. Suppose that (A,A∗) is a Lie bialgebroid. Then π∗
M = ρA ◦ρ∗

A∗ : T ∗M → T M

defines a Poisson structure on M, and so does π̄∗
M = ρA∗ ◦ρ∗

A : T ∗M → T M.

In particular, Property (iv) holds. Concerning Property (v), after straightforward compu-
tations, we have the following.

Proposition 2.2.14. For any e,h1,h2 ∈ Γ(E), we have

ρ(e)⟨h1 | h2⟩= ⟨Je,h1K+D⟨e | h1⟩ | h2⟩+ ⟨h1 | Je,h2K+D⟨e | h2⟩⟩.

Remark 2.2.15. In the case where A = (T M, [·, ·], Id) and A∗ = (T ∗M,0,0), we recover the
standard Courant algebroid, see Example 2.1.3.

Example 2.2.16. For a PN manifold, we have that:

• ⟨X ⊕α | Y ⊕β ⟩= α(Y )+β (X);

• ρ(X ⊕α) = NX +π♯(α);

• D = dπ +dN ;

• JX ⊕α,Y ⊕β K =
(
[X ,Y ]N +L π

α (Y )−L π

β
(X)− 1

2dπ (α(Y )−β (X))
)

⊕
(
[α,β ]π +L N

X (β )−L N
Y (α)+ 1

2dN (α(Y )−β (X))
)

;

• JX ⊕α,Y ⊕β KJ =
(
[X ,Y ]N +L π

α (Y )− iβ (dπX)
)
⊕
(
[α,β ]π +L N

X (β )− iY (dNα)
)
.

2.3 Dirac structures

In general, the bracket J·, ·K in the definition of a Courant algebroid does not satisfy the
Jacobi identity. However, there are specific subbundles L ⊂ E in which the restricted bracket
J·, ·K

∣∣
L satisfies the Jacobi identity. Dirac structures were initially defined for the standard

Courant algebroid by Courant in his paper (COURANT, 1990) and extended to arbitrary Courant
algebroids in (LIU; WEINSTEIN; XU, 1997).

To arrive at the notion of a Dirac structure, first, we need the concepts enclosed in the
following.
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Definition 2.3.1. Let E be a Courant algebroid. A subbundle L ⊂ E is called isotropic if, for all
σ1,σ2 ∈ L,

⟨σ1,σ2⟩= 0.

If the isotropic subbundle is also maximal, it is called Lagrangian. A subbundle is called
integrable if Γ(L) is closed under the bracket J·, ·K.

Now, we are ready to define a Dirac subbundle.

Definition 2.3.2. A Dirac structure, or Dirac subbundle, in a Courant algebroid (E,J·, ·K,ρ,⟨· | ·⟩),
is a subbundle L ⊂ A⊕A∗ which is maximal, isotropic, and integrable.

The next proposition shows that the definition of Dirac structure is independent of the
choice of the bracket J·, ·K or J·, ·KJ .

Proposition 2.3.3. Let L ∈ E be a Lagrangian subbundle. Then, L is closed with respect to J·, ·K
if and only if it is closed with respect to J·, ·KJ .

Proof. Since being Lagrangian depends only on the ⟨· | ·⟩, we just have to check the equivalence
of being closed in both brackets. Through Equation (2.7), we see that the restriction of both
brackets coincides in the Lagrangian subspace, that is, J·, ·K

∣∣
L = J·, ·KJ

∣∣
L.

Example 2.3.4. Let π be a Poisson tensor. Then Graph(π) is a Dirac structure on the canonical
Courant algebroid.

Example 2.3.5. Let Ω be a 2-form such that dΩ = 0. Then Graph(Ω) is a Dirac structure on the
canonical Courant algebroid.

A Dirac structure can also be seen as a Lie algebroid, that is, the bracket of the Dirac
structure satisfies the Jacobi identity. Precisely (LIU; WEINSTEIN; XU, 1997),

Proposition 2.3.6. Suppose that L is a Dirac subbundle of (E,J·, ·K,ρ,⟨· | ·⟩). Then
(
L, ρ|L ,J·, ·K

∣∣
L

)
is a Lie algebroid.

Proof. Once the J·, ·K is closed, the restriction J·, ·K
∣∣
L is meaningful. Since the bracket in the

Courant algebroid is skew-symmetric, we only need to prove that the restriction satisfies the
Jacobi identity and the Leibniz rule.

Since L is isotropic, T (e1,e2,e3)= 0 for all e1,e2,e3 ∈ L, which implies that the condition
(1) of the definition of Courant algebroid becomes the Jacobi identity. Moreover, the isotropy of
L reduces the condition (3) to the Leibniz rule.

Now, we have the notion of transversal Lagrangian subbundles.
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Definition 2.3.7. Let L1 and L2 be two Lagrangian subbundles in a Courant algebroid (E,J·, ·K,ρ,⟨· | ·⟩).
We say that L1 and L2 are transversal to each other if

E = L1 ⊕L2.

Theorem 2.6 in (LIU; WEINSTEIN; XU, 1997), is the converse of our Theorem 2.2.10.
More precisely,

Theorem 2.3.8. Let (E,J·, ·K,⟨· | ·⟩,ρ) be a Courant algebroid and let A,L be two transversal
Dirac subbundles. Then (A,L) is a Lie bialgebroid, where L is identified with the dual bundle of
A under the pairing ⟨· | ·⟩.

Proof. Let (E,J·, ·K,ρ,⟨· | ·⟩) be a Courant algebroid and let A,L ⊂ E be two transverse Dirac
structures. Through Proposition 2.3.6, the ambient space induces a Lie algebroid structure on
A and L. Since ⟨· | ·⟩ is non-degenerate and A is transverse to L, we can define the following
identification

L → A∗

α 7→ α̂(X) = 2⟨α,X⟩

Note that, LdA∗ f (α) =−Jd f ,αK. Indeed, since ρA ◦dA∗ =−ρA∗ ◦dA, we have that, for
all α ∈ A,

[ρA∗α,ρAX ] = [ρα,ρX ] = ρJα,XK

= ρ

(
Lα(X)− 1

2
dA∗(⟨α,X⟩)⊕−LX(α)+

1
2

dA(⟨α,X⟩)
)

= ρA

(
Lα(X)− 1

2
dA∗(⟨α,X⟩)

)
+ρA∗

(
−LX(α)+

1
2

dA(⟨α,X⟩)
)

= ρA (Lα(X))−ρA∗ (−LX(α))+(ρA∗ ◦dA)(⟨α,X⟩).

On the other hand,

(ρA∗ ◦dA)(⟨α,X⟩( f )) = (ρA(dA∗ f ))⟨α,X⟩

=
〈
LdA∗ f (α),X

〉
+ ⟨α, [dA∗ f ,X ]A⟩

=⟨[α,dA f ]A,X⟩−⟨α,LX(dA∗ f )⟩+
〈
LdA∗ f (α)+ [dA f ,α]A∗ ,X

〉
=ρA∗(α)ρA(X) f −⟨dA f ,Lα(X)⟩−ρA(X)ρA∗(α) f

+ ⟨LX(α),dA∗ f ⟩+
〈
LdA∗ f (α)+ [dA f ,α]A,X

〉
=[ρA∗(α),ρA(X)] ( f )−ρA (Lα(X)) f +ρA∗ (LX(α)) f

+
〈
LdA∗ f (α)+ [dA f ,α]A∗,X

〉
.

Thus, we have that ⟨LdA∗ f (α)+Jd f ,αK,X⟩= 0. In a similar way, we can prove that LdA f (X) =

−JdA∗ f ,XK.
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From Proposition 2.2.9, we have that, for any e1,e2,e3 ∈ Γ(A⊕A∗), J1 + J2 + c.p = 0.
Using the equations LdA∗ f (α)=−Jd f ,αK and LdA f (X)=−JdA∗ f ,XK, we have that J1+c.p= 0.
In particular, if e1 = X1, e2 = X2 and e3 = α , we have that

iα (dA∗[X1,X2]A −LX1(dA∗X2)+LX2(dA∗X1)) = 0,

which implies that (A,A∗) is a Lie bialgebroid.

Following (LIU, 2000), we will characterize Dirac structures in terms of their character-
istic pairs. First, we will define a characteristic pair of a Dirac structure.

Let D ⊂ A be a distribution and H ∈ Γ(∧2A) be a 2-section. It is easy to check that the
subbundle

L =
{(

X +H#(α)
)
⊕α | X ∈ D,α ∈ D⊥

}
is maximal and isotropic.

Definition 2.3.9. We call (D,H) the characteristic pair of L.

Remark 2.3.10. Note that, if (D,H1) and (D,H2) correspond to the same maximal isotropic
subbundle, then (H1 −H2)|D = 0.

The following theorem gives a necessary and sufficient condition for a maximal isotropic
subbundle, with a characteristic pair (D,H), to be a Dirac structure.

Theorem 2.3.11 ((LIU, 2000), Theorem 3.1). Let L be a maximal isotropic subbundle of a
Lie bialgebroid (A,A∗) with a characteristic pair (D,H). Then L is integrable if and only if the
following three conditions hold:

(1) For all X ,Y ∈ Γ(D),

[X ,Y ]A ∈ Γ(D);

(2) For every α,β ,γ ∈ D⊥,

(
dAH +

1
2
[H,H]A∗

)
(α,β ,γ) = 0;

(3) Γ
(
D⊥) is closed under the bracket [·, ·]A∗ +[·, ·]H , where [·, ·]H is the bracket induced by

H, that is,

[α,β ]H = LH♯(α)(β )−LH♯(β )(α)−dA∗(H(α,β )),

for all α,β ∈ Γ(A∗).
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Proof. Suppose that the (1),(2) and (3) hold true:

Since L is a maximal isotropic subbundle, we only have to show that, for all X ,Y ∈ D,
and α,β ∈ D⊥,

J(X +H♯(α))⊕α,(Y +H♯(β ))⊕β K ∈ Γ(L).

First, note that for every X ,Y ∈ D,

JX ⊕0,Y ⊕0K = [X ,Y ]A .

By condition (1), JX ⊕0,Y ⊕0K ∈ Γ(L).

Using that

[H♯(α),H♯(α)]A∗ = H♯[α,β ]+
1
2
[H,H]A(α,β );

(dA∗H)(α,β ) = H♯[α,β ]+Lα(H♯(β ))−Lβ (H
♯(α))−dA∗H(α,β ),

we have that, for all α,β ∈ Γ
(
D⊥),

JH#
α ⊕α,H#

β ⊕β K =
(

d∗H +
1
2
[H,H]

)#

(α,β )+H# ([α,β ]A∗ +[α,β ]H)

⊕ ([α,β ]A∗ +[α,β ]H) .

By conditions (2) and (3), we have that(
d∗H +

1
2
[H,H]

)#

(α,β ) ∈ Γ(D), and [α,β ]A∗ +[α,β ]H ∈ Γ

(
D⊥

)
,

thus
[
Ω#α ⊕α,Ω#β ⊕β

]
∈ Γ(L).

Moreover, for all X ∈ Γ(D) and α ∈ Γ
(
D⊥), we have

JX ,H#
α ⊕αK =

([
X ,H#

α
]

A −Lα(X)+
1
2

dA(α(X))

)
⊕
(

LX(α)− 1
2

dA∗(α(X))

)
.

Since α(X) = 0, summing and subtracting H♯ (LX(α)), we have that

JX ,H♯
α ⊕αK =

([
X ,H♯

α

]
A
−Lα(X)−H♯(LX(α))+H♯(LX(α))

)
⊕LX(α).

Condition (1) implies that LX(α) ∈ Γ
(
D⊥). Thus, JX ,H♯α ⊕αK ∈ Γ(L) if and only if

[
X ,H♯

α

]
−Lα(X)−H♯ (LX(α)) ∈ Γ(D). (2.13)
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Now, we take any β ∈ Γ
(
D⊥), thus

⟨[α,β ]A∗ +[α,β ]H | X⟩=⟨[α,β ]A∗ | X⟩+ ⟨LH♯α(β ) | X⟩

−⟨LH#β (α) | X⟩−⟨H♯
α | β ⟩

=−⟨β | Lα(X)⟩+ ⟨β |
[
X ,H#

α
]
⟩−⟨β | H# (LX(α))⟩

=⟨β |
[
X ,H#

α
]
−Lα(X)−H# (LX(α))⟩.

So, Equation 2.13 is equivalent to condition (3).

On the other hand, suppose that L is integrable. For every X ,Y ∈ D, JX ⊕ 0,Y ⊕ 0K =
[X ,Y ]A ∈ Γ(L), thus condition (1) holds true.

For all α,β ∈ Γ
(
D⊥),

JH#
α ⊕α,H#

β ⊕β K =
(

d∗H +
1
2
[H,H]

)#

(α,β )+H# ([α,β ]A∗ +[α,β ]H)

⊕ ([α,β ]A∗ +[α,β ]H) .

Since JH#α ⊕α,H#β ⊕β K ∈ Γ(L), conditions (2) and (3) hold true.

Remark 2.3.12. If we choose D = {0}, we recover the following theorem stated in (LIU;
WEINSTEIN; XU, 1997).

Theorem 2.3.13. Let H ∈ Γ(
∧2 A). LH = {H♯(α)⊕α | α ∈ A∗} is a Dirac subbbundle of (A,A∗)

if and only if H is skew-symmetric and satisfies the following Maurer-Cartan type equation:

dA∗H +
1
2
[H,H]A = 0.

Example 2.3.14. In the case of the standard Courant algebroid, as illustrated in Example 2.1.3,
the Maurer-Cartan equation takes the following form:

1. dΩ = 0, for 2-forms;

2. [π,π] = 0, for bivector fields.

Therefore, L = graph(Ω) = {X ⊕Ω♭(X) | X ∈ Γ(T M)} is a Dirac structure if and only if Ω is
closed. Similarly, L = graph(π) = {π♯⊕α | α ∈ Γ(T ∗M)} is a Dirac structure if and only if π

is a Poisson tensor.

In (FALQUI; MENCATTINI; PEDRONI, 2023), a new result is presented that allows for
the deformation of a Poisson-Nijenhuis manifold into a Poisson quasi-Nijenhuis manifold. We
will discuss this result in Chapter 3. The authors provide some examples that can be understood
in terms of the theory of Dirac structures.



2.3. Dirac structures 43

Example 2.3.15 (Deformations of the canonical PN structure). Let (R2n,π,N) be the canonical
PN structure on R2n, that is, in the canonical coordinates (q1, . . . ,qn, p1, . . . , pn)

π =
n

∑
i=1

∂pi ∧∂qi, N =
n

∑
i=1

pi(∂qi ⊗dqi +∂pi ⊗d pi).

Note that π is the Canonical symplectic structure in Darboux’s coordinate for R2n. Consider the
following 2-form

Ω = ∑
i< j

(vi(qi −qi+1)dqi+1 ∧dqi +d pi+1 ∧d pi),

where Vi,i+1 ∈C∞(R) on the variable qi−qi+1. Given a subbundle D ⊂ T M, we can use Theorem
2.3.11 to decide when the Lagrangian subbundle

L = {(α +Ω
♭(X))⊕X | X ∈ D, α ∈ D⊥}

is a Dirac structure. First, after some computations, we have that

dNΩ =
n

∑
i=1

Vi,i+1dqi ∧dqi+1 ∧ (d pi +d p j),

[Ω,Ω]π =−2∑
i

V ′
i,i+1dqi ∧dqi+1 ∧ (d pi +d pi+1).

If D = T M, then the Theorem 2.3.11 becomes the Theorem 2.3.13 and L is a Dirac structure if
and only if

dNΩ+
1
2
[Ω,Ω]π = 0.

It will hold if and only if, for every i,

V ′
i,i+1 =−Vi,i+1.
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CHAPTER

3
DEFORMATION THEOREM FOR A POISSON

QUASI-NIJENHUIS MANIFOLD

The results presented in this chapter are reported in (LUIZ; MENCATTINI; PEDRONI,
2024). This work generalizes the deformation theorem initially introduced in (FALQUI; MEN-
CATTINI; PEDRONI, 2023) to the case of Poisson quasi-Nijenhuis manifolds (hereafter referred
to as PqN manifolds). Our approach includes two equivalent proofs: the first employs the formal-
ism of Courant algebroids and Dirac structures, while the second utilizes the concept of twisting
a quasi-Lie bialgebroid. We expect that this new formulation may elucidate the relationship
between PqN manifolds and integrable systems, as discussed in (FALQUI et al., 2020).

In this chapter, we will explore the relationships between Poisson-Nijenhuis structures,
Lie bialgebroids and Dirac structures to state and provide the first proof Theorem of 3.2.9.

3.1 Poisson quasi-Nijenhuis manifolds and quasi-Lie bial-
gebroid

In (STIÉNON; XU, 2007) a Poisson quasi-Nijenhuis manifold was defined as follows:

Definition 3.1.1. A Poisson quasi-Nijenhuis manifold is a quadruple (M,π,N,φ) such that:

• the Poisson bivector π and the (1,1) tensor field N are compatible in the sense of Definition
2.2.6;

• the 3-forms φ and iNφ are closed;

• TN(X ,Y ) = π♯ (iX∧Y φ) for all vector fields X and Y , where iX∧Y φ is the 1-form defined as
⟨iX∧Y φ ,Z⟩= φ(X ,Y,Z), and

TN(X ,Y ) = [NX ,NY ]−N[X ,Y ]N (3.1)
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is the Nijenhuis torsion of N.

Similar to the case of PN manifolds, associated with a PqN manifold we have a quasi-Lie
bialgebroid. A quasi-Lie bialgebroid extends the definition of a Lie bialgebroid, allowing the
differential operator dA∗ to deviate from being a square zero. This deviation means that dA∗

does not define a Lie algebroid in the conventional sense. To be precise, we have the following
definition:

Definition 3.1.2. A quasi-Lie bialgebroid is a triple (A,dA∗,φ) consisting of a Lie algebroid A, a
degree 1 derivation dA∗ of both the algebras (Γ(∧•A),∧) and (Γ(∧•A), [·, ·]A), and an element
φ ∈ Γ(∧3A) such that d2

A∗ = [φ , ·]A and dA∗φ = 0.

Let (M,π,N,φ) be a PqN manifold. The Lie algebroid associated with the Poisson tensor,(
T ∗M, [·, ·]π ,π♯

)
will be denoted as (T ∗M)

π
. According to Proposition 3.5 in (STIÉNON; XU,

2007), TM′ = ((T ∗M)
π
,dN ,φ) is a quasi-Lie bialgebroid.

Proposition 3.1.3 ((STIÉNON; XU, 2007), Proposition 3.5 ). The quadruple (M,π,N,φ) is a
Poisson quasi-Nijenhuis manifold if and only if ((T ∗M)π ,dN ,φ) is a quasi-Lie algebroid and φ

is a closed 3-form.

Remark 3.1.4. In the case φ = 0, the Kosmann-Schwarzbach correspondence between Lie
bialgebroids and PN manifolds is obtained, as stated in Theorem 2.2.8.

Now we recall how quasi-Lie bialgebroids are related to Courant algebroids, see e.g.
(ROYTENBERG, 2002; STIÉNON; XU, 2007). Let (A,dA∗ ,φ) be a quasi-Lie bialgebroid, thus
it defines a differential pre-Lie algebra over A, see Appendix A. We can define a morphism
ρA∗ : A∗ → T M by

ρA∗(α)( f ) = α(dA∗ f ), ∀α ∈ Γ(A∗), ∀ f ∈C∞(M),

and a bracket in Γ(A∗) by

[α1,α2]A∗(X) = ρA∗(α1)(X(α2))−ρA∗(α2)(X(α1))−dA∗X(α1,α2),

for all X ∈ Γ(A). Then E = A⊕A∗ together with the bundle map ρ : E → T M

ρ(X ⊕α) = ρA(X)+ρA∗(α),

the non-degenerated symmetric pairing on E

⟨X1 ⊕α1 | X2 ⊕α2⟩=
1
2
(X1 (α2)+X2 (α1)) ,

and the bracket in Γ(E),

JX1,X2K = [X1,X2]A, ∀X1,X2 ∈ A;

Jα1,α2K = φ (α1,α2, ·)⊕ [α1,α2]A∗ , ∀α1,α2 ∈ A∗;

JX ,αK =
(
−iα(dA∗X)− 1

2
dA∗(X(α))

)
⊕
(

iX(dAα)+
1
2

dA(X(α))

)
, ∀X ∈ A, α ∈ A∗,
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is a Courant algebroid.

On the other hand, let (E,J·, ·K,ρ,⟨· | ·⟩) be a Courant algebroid and A be a Dirac structure
transverse to a Lagrangian subbundle L. Since ⟨· | ·⟩ is non-degenerated and E = A⊕L, we can
identify L∗ ≃ A through

A → L∗

α 7→ α̂(X) = 2⟨α,X⟩

Let φ ∈ Γ(∧3A) be defined by

φ(α1,α2,α3) = 2⟨Jα1,α2K | α3⟩,

for all α1,α2,α3 ∈ Γ(L). Since E = A⊕L, for all α1,α2 ∈ L, we have the following decomposi-
tion

Jα1,α2K = [α1,α2]L ⊕ [α1,α2]A,

where [α1,α2]L ∈ L and [α1,α2]A ∈ A.

We define dL, given P ∈ Γ(∧kA), for all α1, . . . ,αk+1 ∈ Γ(L),

(dLP)(α1, . . . ,αk+1) = ∑
i< j

(−1)i+ jP([αi,α j]L,α1 . . . , α̂i, . . . , α̂ j, . . . ,αK)

+
k+1

∑
i=1

(−1)i+1
ρ(αi)(P(α1, . . . , α̂i, . . . ,αk+1)) ,

then (A,dL,φ) is a quasi-Lie bialgebroid.

The following theorem is an extension of Theorem 2.3.8 to quasi-Lie bialgebroids, see
e.g. (STIÉNON; XU, 2007).

Theorem 3.1.5. There is a 1-1 correspondence between quasi-Lie bialgebroids and Dirac
structures with transversal isotropic complements in A⊕A∗ with the Courant algebroid structure
defined by the quasi-Lie bialgebroid.

3.2 Deformation theorem

In the previous section, we discussed how the quasi-Lie bialgebroidTM′=((T ∗M)
π
,dN ,φ)

endows a Courant algebroid structure upon T ∗M⊕T M.

Given a differential form Ω ∈ Γ
(∧2 T ∗M

)
with the property dΩ = 0, we proceed to

define a new endomorphism N̂ : Γ(T M)→ Γ(T M) as N̂ = N +π♯Ω♭. Our goal is to demonstrate
the existence of a Dirac structure D ∈ TM′ that possesses transversal isotropic complements L

such that (Γ(∧•L),dL)≃ (Γ(∧•T M),dN̂), and conclude that the quasi-Lie algebroid (D,dL,φ) is
the one associated with some PqN structure (M,π, N̂, φ̂) .
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Indeed,
L = graph(Ω) =

{
Ω

♭(X)⊕X | X ∈ T M
}

is a Lagrangian subbundle of T ∗M⊕T M. Note that T ∗M⊕{0} ⊂ TM′ is a Dirac structure and
it is transverse to L. By Theorem 3.1.5, we have that ((T ∗M)

π
,dL,φ

′) is a quasi-Lie bialgebroid.

Now, let us compute φ ′. For this end, we need to compute JX ⊕Ω♭(X),Y ⊕Ω♭(Y )K for
every X ,Y ∈ Γ(T M). First, note that

Proposition 3.2.1. Let π be a bivector field and Ω be a 2-form. Then, for every X ,Y ∈ Γ(T M),

L π

Ω♭(X)
Y = L

π♯Ω♭X(Y )+π
♯(iY (d(Ω♭(X)))).

Proof. For every β ∈ Γ(T ∗M), by definition,

L π

Ω♭(X)
Y (β ) = π

♯(Ω♭(X))⟨β ,Y ⟩−⟨[Ω♭(X),β ]π ,Y ⟩

= ⟨L
π♯Ω♭(X)(β ),Y ⟩+ ⟨β ,L

π♯Ω♭(X)(Y )⟩−⟨[Ω♭(X),β ]π ,Y ⟩

= ⟨L
π♯Ω♭(X)(β ),Y ⟩+ ⟨β ,L

π♯Ω♭(X)(Y )⟩−⟨L
π♯Ω♭(X)(β ),Y ⟩

+ ⟨Lπ♯(β )(Ω
♭(X)),Y ⟩+ ⟨d(π(Ω♭(X),β )),Y ⟩.

Note that,

⟨Lπ♯(β )(Ω
♭(X)),Y ⟩= ⟨iπ♯(β )d(Ω

♭(X))+d(Ω(X ,π♯(β ))),Y ⟩

⟨d(π(Ω♭(X),β )),Y ⟩=−⟨d(Ω(X ,π♯(β ))),Y ⟩.

Thus,
L π

Ω♭(X)
Y (β ) = ⟨β ,L

π♯Ω♭X(Y )+π
♯(iY (d(Ω♭(X))))⟩.

Proposition 3.2.2. Let π be a Poisson tensor and Ω be a closed 2-form, then[
Xi,X j

]π

Ω
=
[
Xi,X j

]
π♯Ω♭ ,

where
[X ,Y ]πΩ = L π

Ω♭(X)
Y −L π

Ω♭(Y )X −dπ(Ω(X ,Y )).

Proof. By Proposition 3.2.1, we have that

[X ,Y ]πΩ = L
π♯Ω♭(X)(Y )+π

♯(iY (d(Ω♭(X))))−L
π♯Ω♭(Y )(X)−π

♯(iX(d(Ω♭(Y ))))−dπ(Ω(X ,Y ))

= [π♯
Ω

♭(X),Y ]+ [X ,π♯
Ω

♭(Y )]+π
♯(iY (d(Ω♭(X))))−π

♯(iX(d(Ω♭(Y ))))−dπ(Ω(X ,Y ))

Note that,

π
♯
Ω

♭[X ,Y ] = π
♯(Ω♭[X ,Y ]) = π

♯(iLX (Y )Ω) = π
♯(LX(iY Ω)− iY (LX(Ω)))

= π
♯(iX d(iY Ω)+d(iX iY Ω)− iY d(iX Ω)− iY iX dΩ).
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If dΩ = 0, we have that

[X ,Y ]πΩ = [π♯
Ω

♭(X),Y ]+ [X ,π♯
Ω

♭(Y )]−π
♯
Ω

♭[X ,Y ] = [X ,Y ]
π♯Ω♭.

As shown in Appendix A, see Example A.1.11, we have

Proposition 3.2.3. Let dπ
Ω

be the differential operator given by Equation (A.3) corresponding to
the anchor π♯ and bracket [·, ·]π

Ω
, then

dπ
Ω = [Ω, ·]π .

Proposition 3.2.4. Let (M,π) be a Poisson manifold and Ω ∈ Γ(∧2T ∗M). Then

[Ω♭(X),Ω♭(Y )]π = Ω
♭[X ,Y ]πΩ +

1
2

iY (iX ([Ω,Ω]π)) .

Proof. By Proposition (A.1.10),

[Ω,Ω]π(X ,Y,Z) =−2
(
⟨L π

Ω♭(X)
(Z),Ω♭(Y )⟩+ ⟨L π

Ω♭(Y )
(X),Ω♭(Z)⟩+ ⟨L π

Ω♭(Z)
(Y ),Ω♭(X)⟩

)
and, for every α,β ∈ Γ(T ∗M), and X ∈ Γ(T M),

iβ L π
α (X) = iπ♯(α)(d(X(β )))−X([α,β ]π)

Thus, we have that,

1
2
[Ω,Ω]π(X ,Y,Z) =− i

π♯(Ω♭(X))(dΩ(Y,Z))+ iZ([Ω♭(X),Ω♭(Y )]π)

− i
Ω♭(Z)L

π

Ω♭(Y )(X)

− i
π♯(Ω♭(Z))(dΩ(X ,Y ))+ iY ([Ω♭(Z),Ω♭(X)]π).

On the other hand, we have that

iZ(Ω♭([X ,Y ]πΩ)) =− i
Ω♭(Z)(L

π

Ω♭(X)
(Y ))+ i

Ω♭(Z)(L
π

Ω♭(Y )(X))+ i
Ω♭(Z)(dπ(Ω(X ,Y )))

=− i
π♯(Ω♭(X))(dΩ(Z,Y ))+ iY ([Ω♭(X),Ω♭(Z)]π)+ i

Ω♭(Z)(L
π

Ω♭(Y )(X))

+ i
π♯(Ω♭(Z))(dΩ(X ,Y )).

Using the skew-symmetry of dΩ and [·, ·]π , we have that

1
2
[Ω,Ω]π(X ,Y,Z)+ iZ(Ω♭([X ,Y ]πΩ)) = +iZ([Ω♭(X),Ω♭(Y )]π).

Thus,
[Ω♭(X),Ω♭(Y )]π = Ω

♭[X ,Y ]πΩ +
1
2

iY (iX ([Ω,Ω]π)) .
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Then, we have that

Proposition 3.2.5. For every X ,Y ∈ Γ(T M),

JX ⊕Ω
♭(X),Y ⊕Ω

♭(Y )K =iY iX

(
dNΩ+

1
2
[Ω,Ω]π +φ

)
+Ω

♭ ([X ,Y ]N +[X ,Y ]πΩ)

⊕ ([X ,Y ]N +[X ,Y ]πΩ) .

Proof. Since

JX ,Ω♭(Y )K =
(
−i

Ω♭(Y )(dπX)− 1
2

dπ(Ω(Y,X))

)
⊕
(

iX(dNΩ
♭(Y ))+

1
2

dN(Ω(Y,X))

)
JΩ

♭(X),Y K =
(

i
Ω♭(X)(dπY )+

1
2

dπ(Ω(X ,Y ))
)
⊕
(
−iY (dNΩ

♭(X))− 1
2

dN(Ω(X ,Y ))
)

and, by definition,

[X ,Y ]πΩ = L π

Ω♭(X)
(Y )−L π

Ω♭(Y )(X)+dπ⟨Ω♭(Y ),X⟩

= i
Ω♭(X)(dπY )− i

Ω♭(Y )(dπX)+dπ(Ω(X ,Y )),

thus,

JΩ
♭(X),Y K+ JX ,Ω♭(Y )K = [X ,Y ]πΩ ⊕ (iX(dNΩ

♭(Y )))− iY (dNΩ
♭(X))−dN(Ω(X ,Y )).

By Proposition (3.2.4),

[Ω♭(X),Ω♭(Y )]π = Ω
♭[X ,Y ]πΩ +

1
2

iY (iX ([Ω,Ω]π)) .

Thus,

JX ⊕Ω
♭(X),Y ⊕Ω

♭(Y )K =JΩ
♭(X),Ω♭(Y )K+ JX ,Ω♭(Y )K+ JΩ

♭(X),Y K+ JX ,Y K

=Ω
♭[X ,Y ]πΩ +

1
2

iy(ix([Ω,Ω]π))+ iY iX φ + iX(dNΩ
♭(Y ))

− iY (dNΩ
♭(X))−dN(Ω(X ,Y ))⊕ ([X ,Y ]N +[X ,Y ]πΩ).

Now, we will show that

iX(dNΩ
♭(Y ))− iY (dNΩ

♭(X))−dN(Ω(X ,Y )) = iY (iX(dNΩ))+Ω
♭([X ,Y ]N).

As presented in Section 3.1, we have that

dNΩ(X ,Y,Z) =iX(dNΩ(Y,Z))− iY (dNΩ(X ,Z))+ iZ(dNΩ(X ,Y ))

−Ω([X ,Y ]N ,Z)+Ω([X ,Z]N ,Y )−Ω([Y,Z]N ,X).

By definition:

Ω([X ,Z]N ,Y ) =−i
Ω♭(Y )[X ,Z]N =−iX(dN(Ω(Y,Z)))+ iZ(dN(Ω(Y,X)))+ iZ(iX(dNΩ

♭(Y )))
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and

−Ω([Y,Z]N ,X) = i
Ω♭(X)[Y,Z]N = iY (dN(Ω(X ,Z)))− iZ(dN(Ω(X ,Y )))− iZ(iY (dNΩ

♭(X))).

Thus,

dNΩ(X ,Y,Z) =−iZ(Ω♭[X ,Y ]N)+ iZ(iX(dNΩ
♭(Y )))− iZ(iY (dNΩ

♭(X)))− iZ(dN(Ω(X ,Y )))

and
iX(dNΩ

♭(Y ))− iY (dNΩ
♭(X))−dN (Ω(X ,Y )) = iY (iX (dNΩ))+Ω

♭[X ,Y ]N .

Finally,

JX ⊕Ω
♭(X),Y ⊕Ω

♭(Y )K =iY iX

(
dNΩ+

1
2
[Ω,Ω]π +φ

)
+Ω

♭ ([X ,Y ]N +[X ,Y ]πΩ)

⊕ ([X ,Y ]N +[X ,Y ]πΩ)

And finally, we have that

φ
′(X ,Y,Z) = 2⟨JX ⊕Ω

♭(X),Y ⊕Ω
♭(Y )K,Z ⊕Ω

♭(Z)⟩

=
2
2

(
dNΩ+

1
2
[Ω,Ω]π +φ

)
(X ,Y,Z)+Ω([X ,Y ]N +[X ,Y ]πΩ,Z)

+Ω(Z, [X ,Y ]N +[X ,Y ]Ω)

=

(
dNΩ+

1
2
[Ω,Ω]π +φ

)
(X ,Y,Z).

Now, we will demonstrate that when we identify L with T M, it follows that (Γ(∧•L),dL)≃
(Γ(∧•T M),dN̂),.

Proposition 3.2.6. Let (M,π,N) be a PN manifold and Ω be a closed 2-form. Suppose that
L = graph(Ω♭) is a Lagrangian subbundle in TM′, than, when we identify

∧•L∗ with
∧•T ∗M

through
σ(Ω♭(X1)⊕X1, . . . ,Ω

♭(Xk)⊕Xk) = σ(X1, . . . ,Xk),

we have that
(Γ(∧•L),dL)≃ (Γ(∧•T M),dN̂),

for every σ ∈
∧•T ∗M. In particular, if L is a Dirac structure, we have that (T M, [·, ·]N̂ ,N) is

isomorphic as a Lie algebroid to (L, [·, ·]L,ρL).

Proof. When L ⊂ TM′ we have the following Lie algebroid structure: the anchor is given by

ρL

(
Ω

♭(X)⊕X
)
= π

♯
Ω

♭(X)+NX ,
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and the Lie bracket is given by

[Ω♭(X)⊕X ,Ω♭(Y )⊕Y ]L = Ω
♭ ([X ,Y ]N +[X ,Y ]πΩ)⊕ ([X ,Y ]N +[X ,Y ]πΩ) ,

where

[X ,Y ]πΩ = L π

Ω♭(X)
Y −L π

Ω♭(Y )X −dπ(Ω(X ,Y )).

Associated with this Lie algebroid we have the following differential operator, denoted
by d̂L. Using the same identification ∧kL∗ ≈ ∧kT ∗M, for σ ∈ ∧k−1T ∗M

dLσ

(
Ω

♭ (X1)⊕X1, . . . ,Ω
♭(Xk)⊕Xk

)
=

∑
i< j

(−1)i+ j
σ

(
Ω

♭ (Xi)⊕Xi,Ω
♭
(
X j
)
⊕X j]L,Ω

♭ (X1)⊕X1, . . . ,Ω
♭ (Xk)⊕Xk

)
+

k

∑
i=1

(−1)i+1L
ρL(Ω♭(Xi)⊕Xi)

(
σ

(
Ω

♭ (X1)⊕X1, . . . ,Ω
♭ (Xk)⊕Xk

))
=∑

i< j
(−1)i+ j

σ
([

Xi,X j
]

N ,X1, . . . ,Xk
)
+∑

i< j
(−1)i+ j

σ

([
Xi,X j

]π

Ω
,X1, . . . ,Xk

)
+

k

∑
i=1

(−1)i+1LNXi (σ (X1, . . . ,Xk))+
k

∑
i=1

(−1)i+1L
π♯Ω♭(Xi)

(σ (X1, . . . ,Xk))

=dNσ (X1, . . . ,Xk)+∑
i< j

(−1)i+ j
σ

([
Xi,X j

]π

Ω
,X1, . . . ,Xk

)
+

k

∑
i=1

(−1)i+1L
π♯Ω♭(Xi)

(σ (X1, . . . ,Xk)) .

Since dΩ = 0, we can apply Proposition 3.2.2 and conclude that
[
Xi,X j

]π

Ω
=
[
Xi,X j

]
π♯Ω♭ , thus,

(Γ(∧•L),dL)≃ (Γ(∧•T M),dN̂),

Remark 3.2.7. Note that it is not necessarily true that d2
L = 0. It will happen if and only if L is a

Dirac structure in TM′.

The following proposition is proven in (STIÉNON; XU, 2007):

Proposition 3.2.8 ((STIÉNON; XU, 2007), Proposition 3.5). The quadruple (M,π,N,φ) is a
Poisson quasi-Nijenhuis manifold if and only if ((T ∗M)

π
,dN ,φ) is a quasi-Lie bialgebroid and

φ is a closed 3-form.

In this way, we have proved the main theorem of this chapter.
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Theorem 3.2.9. Let (M,π,N,φ) be a PqN manifold and let Ω be a closed 2-form. If N̂ =

N +π♯Ω♭ and
φ
′ = φ +dNΩ+

1
2
[Ω,Ω]π ,

then (M,π, N̂,φ ′) is a PqN manifold. In particular, if

φ +dNΩ+
1
2
[Ω,Ω]π = 0,

then (M,π, N̂) is a PN manifold.

The proof can be summarized in the diagram shown in Figure 1. In Chapter 5 we
presented another proof for this theorem using the twists of Proto-bialgebroids.

Example 3.2.10 (The closed Toda lattice). In (FALQUI et al., 2020), it is shown how to deform
the PN structure of the open Toda lattice to obtain PqN structure for the closed one. More than
that, they show that this PqN structure is involutive.

The PN structure for the open Toda lattice is given by the manifold R2n endowed with
the Poisson tensor which is given in the canonical coordinates by

π =
n

∑
i=1

∂pi ∧∂qi

and the (1,1)-tensor

N =
n

∑
i=1

pi
(
∂qi ⊗dqi +∂pi ⊗dpi

)
+∑

i< j

(
∂qi ⊗dp j −∂q j ⊗dpi

)
+

n

∑
i=1

eqi−qi+1
(
∂p j ⊗dqi −∂pi ⊗dq j

)
.

We have that

1
2

I1 =
1
2

Tr(N) =
n

∑
i=1

pi,
1
2

I2 =
1
4

Tr(N2) =
1
2

n

∑
i=1

p2
i +

n−1

∑
i=1

eqi−qi+1 (3.2)

are respectively the total momentum and the energy of the n-particle open Toda lattice.

If we apply the Theorem 3.2.9 to the above PN structure using the closed 2-form
Ω = eqn−q1dqn ∧dq1 we get the deformated tensor

N̂ =
n

∑
i=1

pi
(
∂qi ⊗dqi +∂pi ⊗d pi

)
+∑

i< j

(
∂qi ⊗d p j −∂q j ⊗d pi

)
+

n−1

∑
i=1

eqi−qi+1
(
∂pi+1 ⊗dqi −∂pi ⊗dqi+1

)
− eqn−q1 (∂p1 ⊗dqn −∂pn ⊗dq1) ,

(3.3)

while φ ′ = dNΩ = dI1 ∧Ω. We recover the Hamiltonian of the n-particle close toda by

1
4

Tr
(
N̂2)= n

∑
i=1

(
1
2

p2
i + eqi−qi+1

)
, (3.4)
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where qn+1 = q1. The other Ik’s are the well know constants of the motion of the closed Toda
chain.

Figure 1 – Proof of Theorem 3.2.9

i) (M,π,N,φ) is a PqN mani f old

ii) ((T ∗M)
π
,dN ,φ) is a quasi−Lie Bialgebroid

1)

2)

iii) T M ⊕T ∗M has a Courant algebroid structure given by
((T ∗M)

π
,dN ,φ)

iv) L = graph (Ω) is Lagrangian in T M ⊕T ∗M and
and transverse to T ∗M

v) (T ∗M, dL, φ ′) is a quasi−Lie bialgebroid, where
φ ′=

(
φ +dNΩ+ 1

2 [Ω,Ω]π
)

vi) dL ≃ dN̂
T hus,

(
T ∗M,dN̂ , φ

)
is a quasi−Lie bialgebroid,

where N̂ = N +π♯ Ω ♭

vii) (M, π, N̂, φ ′) is a PqN mani f old

1) Proposition 3.5 o f “Poisson Quasi−Ni jenhuis Mani f olds” by Stinon & Xu

3)

4)

5)

2) T heorem 2.6 o f “Poisson Quasi−Ni jenhuis Mani f olds” by Stinon & Xu

3) T heorem 2.6 o f “Poisson Quasi−Ni jenhuis Mani f olds” by Stinon & Xu

4) Proposition (3.2.6)

5) T heorem 3.5 o f “Poisson Quasi−Ni jenhuis Mani f olds” by Stinon & Xu
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Remark 3.2.11. If GΩ2
c

is the (additive) group of closed 2-forms on M, the Theorem 3.2.9
implies that the set of the PqN-structures on M carries the following GΩ2

c
-action:

Ω · (M,π,N,φ) = (M,π,N +π
♯
Ω

♭,φ +dNΩ+
1
2
[Ω,Ω]π).
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CHAPTER

4
DIRAC-NIJENHUIS STRUCTURES

The concept of Dirac-Nijenhuis structures is not uniformly defined in the literature,
as evidenced by various definitions found in references (CLEMENTE-GALLARDO; COSTA,
2004), (HE; LIU, 2006) and (BURSZTYN; DRUMMOND; NETTO, 2023). Despite the varying
definitions, they all build upon the concept of Poisson-Nijenhuis structures. In simple terms,
a Dirac-Nijenhuis structure is a pair (L,D), where L ⊂ E is a Dirac structure on the Courant
algebroid (E,⟨· | ·⟩,J·, ·KJ,ρ) and D : E → E is a (1,1)-tensor that is compatible with L in some
suitable sense.

The focus of our discussion is on the definition proposed in the paper (BURSZTYN;
DRUMMOND; NETTO, 2023). We aim to show that by using the deformation process on a PN
manifold with the Nijenhuis tensor as the identity, we can establish a Dira-Nijenhuis structure.

In the abovementioned paper, the authors define Dirac-Nijenhuis structures using the
concept of one-derivations, a specific type of generalized derivations formally introduced and
explored by (BURSZTYN; DRUMMOND, 2019) and (DRUMMOND, 2022).

Remark 4.0.1. In this chapter, we will use the third definition of the Courant algebroid, that is,
we will use the one involving the non-skew-symmetric bracket J·, ·KJ . See Definition 2.1.8.

Definition 4.0.2. Let E → M be a real vector bundle. A one-derivation on E is a triple D =

(D, l,N), where N : T M → T M and l : E → E are vector bundles maps covering the identity, and
D : Γ(E)→ Γ(T ∗M⊗E) is a R-linear map satisfying the following Leibniz-type condition:

DX( f e) = f DX(e)+(Lx( f ))l(e)− (LNX( f ))e,

where X ∈ Γ(T M), e ∈ Γ(E), f ∈C∞(M) and DX : Γ(E)→ Γ(E) is defined by

DX(e) = iX(D(e)).
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Associated to a one-derivation D = (D, l,N) on E one can define a one-derivation on E∗

by D∗ = (D∗, l∗,N), where l∗ : E∗ → E∗ is dual to l, and D∗ is defined by the equation

⟨D∗
X(ξ ),e⟩= LX⟨ξ , l(e)⟩−LN(X)⟨ξ ,e⟩−⟨ξ ,DX(e)⟩

for e ∈ Γ(E),ξ ∈ Γ(E∗), and X ∈ Γ(T M).

An important property of a one-derivation is its relationship with linear (1,1)-vector fields.
Given a vector bundle q : E → M, its tangent prolongation is the vector bundle T (q) : T E → T M,
where T (q) is the differential of the projection q. Consider D ∈ Γ(T ∗E ⊕T E). We say that D is
linear if there exists a morphism N : T M → T M that turns D into a vector bundle morphism.

T M

T (q)

T ET E

N T M

T (q)

D

In (BURSZTYN; DRUMMOND, 2019), the authors demonstrated the existence of a 1–1
correspondence between one-derivations and linear (1,1)-tensors on E. The following definition
gives the compatibility between a one- derivation on E and the Courant algebroid structure.

Definition 4.0.3. Let (E,⟨· | ·⟩,J·, ·KJ,ρ) be a Courant algebroid. A Courant one-derivation is
a one-derivation D = (D, l,N) on the vector bundle E such that D = D∗ and satisfying the
following compatibility equations:

(CN1) ρ ◦ l = N ◦ρ;

(CN2) ρ (DX(e)) = DN
X (ρ(e));

(CN3) l
(
Je1,e2KJ)= Je1, l(e2)KJ −Dρ(e2)(e1)−ρ∗(C(e1,e2));

(CN4) DX
(
Je1,e2KJ)= Je1,DX(e2)KJ − Je2,DX(e1)KJ +D[ρ(e2),X ](e1)−D[ρ(e1),X ](e2)

−ρ∗(iX dC(e1,e2)),

for all e1,e2 ∈ Γ(E) and X ∈ Γ(T M), where

C(e1,e2) = ⟨D(·)(e1) | e2⟩.

Definition 4.0.4. We call the one-derivation D = (D, l,N) a Nijenhuis one-derivation if the
following equations hold

TN = 0, (4.1)

DX(l(e))− l(DX(e)) = 0, (4.2)

l(D[X ,Y ](e))− [DX ,DY ](e)−D[X ,Y ]N (e) = 0. (4.3)
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Definition 4.0.5. A Courant-Nijenhuis one-derivation is a Courant one-derivation that is also a
Nijenhuis one-derivation. A Courant algebroid equipped with a Courant-Nijenhuis one-derivation
is called Courant-Nijenhuis algebroid.

Definition 4.0.6. Let (E,⟨· | ·⟩,J·, ·KJ,ρ) be a Courant algebroid and D = (D, l,N) be a Courant
one-derivation. A Lagrangian subbundle L is called D-invariant if

• l(L)⊂ L;

• DX(γ(L))⊂ Γ(L),

for all X ∈ Γ(T M).

Proposition 4.0.7. Let D = (D, l,N) be a Courant one-derivation. A Lagrangian subbundle L is
D-invariant if and only if

S
∣∣
L =C

∣∣
L = 0,

where S is the symmetric 2-form defined by

S(e1,e2) = ⟨l(e1) | e2⟩,

and C is defined by
C(e1,e2) = ⟨D(·)(e1) | e2⟩.

Definition 4.0.8. A Dirac structure L is called a Dirac-Nijenhuis structure if it is D-invariant.

4.1 How Dirac-Nijenhuis structures generalize Poisson-
Nijenhuis Manifolds

Given a (1,1)-tensor N : T M → T M, we can define DN : Γ(T M)→ Γ(T ∗M⊗T M) by

DN
X (Y ) = iX DN(Y ) = [Y,NX ]−N[Y,X ], for all X ,Y ∈ Γ(T M), (4.4)

and DN∗ : Γ(T ∗M)→ Γ(T ∗M⊗T ∗M) by

DN∗
X (α) = iX DN∗(α) = LX(N∗

α)−LNX(α), for all X ∈ Γ(T M) and α ∈ Γ(T ∗M). (4.5)

On (BURSZTYN; DRUMMOND; NETTO, 2022), it is proven that DN = ((DN ,DN∗),

(N,N∗),N) is a Courant one-derivation of TM = ((T M, [·, ·], Id),(T ∗M,0,0)). Additionally, N

is a Nijenhuis tensor if and only if DN is a Nijenhuis one-derivation.

Proposition 4.1.1. Let π ∈ Γ(∧2T M) and Lπ = graph(π♯) and N : T M → T M be a Nijenhuis
tensor. The pair (Lπ ,N) is a Dirac-Nijenhus structure if and only if (π,N) is a Poisson Nijenhuis
structure.
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Definition 4.1.2. Let Ω ∈ Γ(∧2A∗) and N : Γ(A)→ Γ(A). We say that (Ω,N) is a ΩN-structure
if Ω♭ ◦N = N∗ ◦Ω♭, N is a Nijenhuis tensor, and both Ω and ΩN are closed, where ΩN(X ,Y ) =

Ω(NX ,Y ).

Proposition 4.1.3. Let Ω be a closed 2-form, LΩ = graph(Ω♭) and N : T M → T M be a Nijenhuis
tensor. The pair (LΩ,N) is a Dirac-Nijenhus structure if and only if (Ω,N) is a ΩN-structure.

4.2 Deformation of the Identity
In this last subsection we will prove the following result:

Theorem 4.2.1. If (M,π) is a Poisson manifold and Ω satisfies the conditions

[Ω,Ω]π = 0 (4.6)

dΩ = 0, (4.7)

then (LΩ, N̂) is a Dirac-Nijenhuis structure, where N̂ = Id +π♯Ω♭.

Through Theorem 3.2.9, we have that (M,π, N̂) is a PN manifold. Associated with every
deformation of this type, we have a ΩN-structure. Precisely,

Proposition 4.2.2. Let (M,π, Id) and Ω as above. Then (Ω,π♯Ω♭) is a ΩN-structure.

Proof. First, note that

Id ◦Ω
♭+(π♯ ◦Ω

♭)∗ ◦Ω
♭ = Id ◦Ω

♭+(Ω♭ ◦π
♯)◦Ω

♭ = Id ◦Ω
♭+Ω

♭ ◦ (π♯ ◦Ω
♭).

By Theorem 3.2.9, we have that N̂ is a Nijenhuis tensor. Now, we must show that ΩN̂ is closed,
but seeing that

(d +d
π♯Ω♭)Ω = i

π♯Ω♭dΩ−d(i
π♯Ω♭Ω),

and 1
2 i

π♯Ω♭Ω = Ω
π♯Ω♭ , we have that Ω

π♯Ω♭ is closed.

Thus, by Proposition 4.1.3, we have that (LΩ, N̂) is a Dirac-Nijenhuis structure, and
Theorem 4.2.1 is proved.

Remark 4.2.3. Although the exigence of N = Id is somewhat restrictive, as shown in (FALQUI;
MENCATTINI; PEDRONI, 2023), some important examples of PqN structures can be con-
structed as a deformation of the identity. We can cite Example 2.3.15, the closed Toda lattice,
and the rational Calogero system.
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CHAPTER

5
THE BIG BRACKET FORMALISM FOR THE

DEFORMATION THEOREM

pIn this chapter, we will use the theory of supermanifolds and the works of (ANTUNES,
2008), (KOSMANN-SCHWARZBACH; RUBTSOV, 2010) and (ROYTENBERG, 2002) to
present an alternative proof of Theorem 3.2.9 in the setting of twists of Proto-bialgebroids.

5.1 Big bracket

The theory of graded manifolds is a generalization of the theory of smooth manifolds
in which one can work with functions on Z-graded variables. One of the applications of this
formalism is that we can see the graded algebra of sections ∧•A of some vector bundle A as
functions on a supermanifold. See (ROYTENBERG, 1999; VORONOV, 2002).

Let A → M be a vector bundle. Let {x1, . . . ,xn} be a local coordinate system for U ⊂ M,
and let {e1, . . . ,em} be a local frame in U . Then we have the induced local coordinate system
{x1, . . . ,xn,ξ 1, . . . ,ξ m} for the supermanifold ΠA, where xi are the commutative coordinates on
the base and ξ j are the anti-commutative coordinates for the fibers. We have the isomorphism
C∞(ΠA∗)≃ Γ(T ∗M).

The cotangent bundle T ∗ΠA∗ has a canonical symplectic structure with Darboux coor-
dinates {xi,ξ j, pi,θ j}, where {θ j} are the generators of the algebra Γ(∧•A

∣∣
U) corresponding

to {ξ j}. We also can consider T ∗ΠA with the canonical symplectic structure. Then, there is a
symplectomorphism L : T ∗ΠA∗ → T ∗ΠA given in local coordinates by

(xi,ξ j, pi,θ j)→ (xi,θ j, pi,ξ
j).

See e.g. (ROYTENBERG, 1999; ROYTENBERG, 2002; VORONOV, 2002). Thus, we can see
both Γ(∧•A∗) and Γ(∧•A) inside C∞(T ∗ΠA∗).
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ΠA∗

pr1

T ∗ΠA∗

ΠA

L T ∗ΠA

pr2

To the coordinates of T ∗ΠA∗ two degrees are assigned as follows: a bidegree (ε,δ ) given
by

xi ξ j pi θ j

(0,0) (0,1) (1,1) (1,0)

resulting in a total degree of ε +δ , ∣∣xi
∣∣ ∣∣ξ j

∣∣ |pi|
∣∣θ j

∣∣
0 1 2 1

The Poisson bracket {·, ·} on T ∗ΠA∗ with bidegree (-1,-1) is known as the “big bracket”,
see e.g. (KOSMANN-SCHWARZBACH, 2005; KOSMANN-SCHWARZBACH; RUBTSOV,
2010). It satisfies the following properties:

(i) {P1,P2}= 0, if P1,P2 ∈ Γ(∧•A);

(ii) {σ1,σ2}= 0, if σ1,σ2 ∈ Γ(∧•A∗);

(iii) {X ,α}= α(X), if X ∈ Γ(A) and α ∈ Γ(A∗);

(iv) {Θ1,Θ2}=−(−1)|Θ1||Θ2|{Θ2,Θ1};

(v) {Θ1,Θ2 ∧Θ3} = {Θ1,Θ2}∧Θ3 +(−1)θ1θ2Θ2 ∧{Θ1,Θ3}, for all Θ1 ∈ Γ(∧θ1(A⊕A∗))

and Θ2 ∈ Γ(∧θ2(A⊕A∗)).

Additionally, it satisfies the Jacobi identity:

{Θ1,{Θ2,Θ3}}= {{Θ1,Θ2},Θ3}+(−1)|Θ1||Θ2|{Θ2,{Θ1,Θ3}}.

Or, equivalently,

{{Θ1,Θ2},Θ3}= {Θ1,{Θ2,Θ3}}+(−1)|Θ2||Θ3|{{Θ1,Θ3},Θ2}.

In local coordinates:

{xi, p j}= δ
j

i ,

{ξ
i,θ j}= δ

j
i ,

while it vanishes in other combinations.
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Proposition 5.1.1. Given elements ei = Xi ⊕αi ∈ A⊕A∗, where i ∈ {1,2,3}, then

{e1{e2,e3}}= 0.

Proof. Firstly, observe that {e2,e3}= ⟨e2 | e3⟩ ∈C∞(M) possesses bidegree (0,0). Additionally,
e1 = X1 +α1, where X1 holds a bidegree of (1,0) and α1 a bidegree of (0,1). The result follows
from the fact that the big bracket has a bidegree of (-1,-1).

5.2 Lie algebroid
Given a vector bundle A, a Lie algebroid structure on A can be given by a square zero

differential operator dA. This operator acts on C∞(ΠA) in the following way

dA( f )(X) = ρA(X) f ,

dA(α)(X1,X2) = ρA(X1)(α(X2))−ρA(X2)(α(X1))−α([X1,X2]A),
(5.1)

where f ∈ C∞(M), α ∈ Γ(A∗) and X1,X2 ∈ Γ(A). Then, one can see dA as an element inside
T ∗ΠA, which is given in local coordinates by

dA = ξ jA
j
i (X)

∂

∂xi
− 1

2
Ci j

k (x)ξiξ j
∂

∂ξk
= ξ jA

j
i (X)pi − 1

2
Ci j

k (x)ξiξ jθ
k, (5.2)

where ρA(ξi) = Ai
j

∂

∂x j
and [ξi,ξ j]A =Ci j

k (x)ξk.

Proposition 5.2.1. The condition d2
A = 0 is equivalent to

{dA,dA}= 0.

Proof. First, note that under the inclusion of Γ(∧•A∗) ⊂C∞(T ∗ΠA), we have that, given σ ∈
Γ(∧kA∗), {dA,σ} ∈ Γ(∧k+1A∗). From the properties of the Poisson bracket, we have that {dA, ·}
is a degree 1 derivation of (Γ(∧•A∗),∧).

By means of Equation (5.2), {dA, ·} acts in (Γ(∧•A∗),∧) in the same way dA does.
Applying the Jacobi identity, we have

d2
A(σ) = {dA,{dA,σ}}= {{dA,dA},σ}−{dA,{dA,σ}}.

Thus,
d2

A(σ) = {dA,{dA,σ}}= 1
2
{{dA,dA},σ}.

Hence, d2
A = 0 if and only if {dA,dA}= 0.

Thus, we can understand a Lie algebroid in terms of the big bracket as follows.

Definition 5.2.2. A Lie algebroid structure on a vector bundle A → M is the supermanifold
T ∗ΠA together with a function µ with bidegree (1,2) such that

{µ,µ}= 0.
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The Lie algebroid structure defines a Schouten bracket on the section of ∧•A by

[P,Q]µ =−{{P,µ},Q},

for all P,Q ∈ Γ(∧•A). It also defines an anchor map ρµ : A → T M, by

ρµ(X) f = {{X ,µ}, f},

for all X ∈ Γ(A) and f ∈C∞(M).

The differential operator of the Lie algebroid is given by

dµ = {µ, ·},

and, given X ∈ Γ(A), the Lie derivative is defined in terms of the differential and contraction
operators by

L µ

X = [iX ,dµ ].

Remark 5.2.3. Through the identification L : T ∗ΠA∗ → T ∗ΠA, a Lie algebroid (A∗, [·, ·]A∗,ρA∗)

can be described by a function γ with bidegree (2,1) on C∞(T ∗ΠA∗) such that {γ,γ}= 0.

5.3 Bivectors, 2-forms and (1,1)-tensor
To characterize Poisson quasi-Nijenhuis structures within a Lie algebroid, it’s crucial to

grasp how (1,1)-tensors and 2-sections of both A and A∗ are incorporated into this framework

Lemma 5.3.1. Let π ∈ Γ(∧2A), Ω ∈ Γ(∧2A∗) and N : A → A be an endomorphism induced by a
(1,1)-tensor. Then,

π
♯(α) = {α,π}, for all α ∈ Γ(∧A∗),

Ω
♭(X) = {Ω,X}, for all X ∈ Γ(∧A),

NX = {X ,N}, for all X ∈ Γ(∧A).

Proof. The results follow directly comparing the local expression of both sides of the equations.

We can also consider the (1,1)-tensor defined by π♯Ω♭ .

Lemma 5.3.2. The map N = π♯ ◦Ω♭ is given by

N = {π,Ω}.

Proof. Since, for every X ∈ Γ(A), X = ∑i Xiθ
i and π = ∑i, j

1
2πi jθ

iθ j, we have that

{X ,π}= 0.
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Applying the Jacobi identity for {·, ·}, we have that

π
♯(Ω♭X) = {Ω

♭X ,π}= {{Ω,X},π}= {{Ω,π},X}= {X ,{π,Ω}}= {X ,N}.

Lemma 5.3.3. Let π ∈ Γ(∧2A) and φ ∈ Γ(∧3A∗), then, for all X ,Y ∈ Γ(∧A),

π
♯(iX∧Y φ) = {{X ,{φ ,π}},Y}.

Proof. By the Jacobi identity, we have

{{X ,{φ ,π}},Y}= {{{X ,φ},π},Y}= {{{X ,φ},Y},π}= {{iX φ ,Y},π}= {iy(ixφ),π}

= π
♯(iX∧Y φ).

If π is a 2-section, γπ = {π,µ} has degree (2,1). Consequently, if {γπ ,γπ}= 0, it defines
a Lie algebroid structure on the dual bundle A∗. The following lemma provides the necessary
and sufficient conditions for the 2-section π to define a Lie algebroid structure in A∗.

Lemma 5.3.4. γπ defines a Lie algebroid structure on A∗ if and only if

{µ, [π,π]µ}= 0.

Proof. By definition,

{γπ ,γπ}= {{π,µ},{π,µ}}.

Using the Jacobi identity,

{γπ ,γπ}= {{{π,µ},π},µ}+{π,{{π,µ},µ}}= {[π,π]µ ,µ}.

The notion of the Poisson bi-vector field can be extended to an arbitrary Lie algebroid.

Definition 5.3.5. Let (A,µ) be a Lie algebroid and π ∈ Γ(∧2A). We say that π is a Poisson
structure on (A,µ) if

[π,π]µ = {{π,µ},π}= 0.

Note that, if π is a Poisson structure, Lemma 5.3.4 ensures that γπ defines a Lie algebroid
structure on A∗, but it does not work both ways. That is, if we start with π ∈ Γ(∧2A) such that
{γπ ,γπ}= 0, we have that

{µ, [π,π]µ}= 0.



66 Chapter 5. The big bracket formalism for the deformation theorem

The above equation means that [π,π]µ vanishes on the dµ -exact 1-sections of A. Indeed, through
the Jacobi identity,

{[π,π]µ ,dµ f}= {[π,π]µ ,{µ, f}}= {{[π,π]µ ,µ}, f}+{µ,{[π,π]µ , f}}.

Since {µ, [π,π]µ}= 0 and [π,π]µ has not components on pk, we have that

{[π,π]µ ,dµ f}= 0, for all f ∈C∞(M).

When the dµ -exact 1-forms generate Γ(A∗) locally, we have that

{µ, [π,π]µ}= 0 ⇐⇒ [π,π]µ = 0.

Remark 5.3.6. We will define the Schouten bracket associated with γπ using a different conven-
tion than the one defined for µ . Specifically, we denote it as:

[α,β ]γ = {{γπ ,α},β}.

This choice is made to maintain consistency with the sign defined in Chapter 3 and align with
the results presented in (FALQUI; MENCATTINI; PEDRONI, 2023). The bracket defined by γπ

on Γ(∧•A∗) is the Koszul bracket of forms. For C∞(M) and Γ(A∗),

{{{π,µ},α}, f}= ((ρµ ◦π
♯)α) f ,

{{{π,µ},α},β}= L µ

π♯α
(β )−L µ

π♯β
(α)−dµ(π(α,β )).

Similarly to how the endomorphism of the tangent bundle alters the Lie algebroid
structure of (A, [·, ·], Id), a (1,1)-tensor N ∈ Γ(A∗⊗A) deforms the structure associated with the
function µ of bidegree (0,2) in the following manner:

µN = {N,µ}.

The function µN is dµ -closed.

Lemma 5.3.7. Given a (1,1)-tensor N ∈ Γ(A∗⊗A) on the Lie algebroid (A,µ). Then

{µ,µN}= 0.

Proof. Applying the Jacobi identity,

{µ,{N,µ}}= {{µ,N},µ}+{N,{µ,µ}}.

But, {µ,N}=−{N,µ} and {µ,µ}= 0, thus

2{µ,{N,µ}}= 0.
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This new function µN has also bidegree (0,2) and defines an anchor ρN
µ = ρµ ◦N and a

skew-symmetric bracket on A as

[X ,Y ]µN = {X ,{N,µ}},Y}, for all X ,Y ∈ Γ(A).

It is called the deformed bracket.

Lemma 5.3.8. For all X ,Y ∈ Γ(A),

[X ,Y ]µN = [NX ,Y ]µ +[X ,NY ]µ −N[X ,Y ]µ .

Proof. Using the Jacobi identity to {·, ·} and the definitions of [·, ·]µ and [·, ·]µN , we have

[X ,Y ]µN = {{X ,{N,µ}},Y}= {{{X ,N},µ},Y}+{{N,{X ,µ}},Y}

= [NX ,Y ]µ +{N,{{X ,µ},Y}}+{{N,Y},{X ,µ}}

= [NX ,Y ]µ +[X ,NY ]µ −N[X ,Y ]µ .

The Nijenhuis torsion of N is defined in the usual way, for all X ,Y ∈ Γ(A),

TµN(X ,Y ) = [Nx,NY ]µ −N([X ,Y ]Nµ ) = [Nx,NY ]µ −N([NX ,Y ]µ +[X ,NY ]µ −N[X ,Y ]µ).

(5.3)
The following Lemma gives the description of the Nijenhuis torsion in terms of the Big bracket.

Lemma 5.3.9. The Nijenhuis torsion satisfies the following equations:

T µN =
1
2
({N,{N,µ}}−{N2,µ}), (5.4)

1
2
{{N,µ},{N,µ}}= {µ,TµN}. (5.5)

Proof. After applying many times the Jacobi identity, we can prove the Equation (5.4). See e.g.
(GRABOWSKI, 2006; KOSMANN-SCHWARZBACH; RUBTSOV, 2010). Now, let us prove
Formula (5.5). Note that, thanks to Lemma 5.3.7, {µ,{N2,µ}}= 0, and consequently,

{µ,TµN}= 1
2
{µ{N,{N,µ}}}.

Using the Jacobi identity, we have

{µ{N,{N,µ}}}= {{µ,N},{N,µ}}+{N,{µ,{N,µ}}}.

Since {µ,µ}= 0, {µ,{N,µ}}= 0. Thus,

{µ,TµN}= 1
2
{{N,µ},{N,µ}}.
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We define a Nijenhuis tensor as follows.

Definition 5.3.10. Let N ∈ Γ(A×A∗) be a (1,1)-tensor of the Lie algebroid (A,µ). We say that
N is a Nijenhuis tensor if

TµN = 0.

Similar to the Poisson structure, (A,µN) forms a Lie algebroid if N is a Nijenhuis tensor,
but the opposite direction does not necessarily hold true. In fact, equation (5.3) shows that TµN

has no components in pi, thus, if {µ,TµN}= 0, for every f ∈C∞(M),

{TµN,dµ f}= {{TµN,µ}, f}+{µ,{TµN, f}}= 0.

If we assume that locally the dµ -exact 1-forms generate Γ(A∗), then we have that

{µ,TµN}= 0 ⇐⇒ TµN = 0.

5.4 Proto-bialgebroid
Proto-bialgebroid generalizes the notion of Manin triples for Lie bialgebroids.

Definition 5.4.1. A proto-bialgebroid is the supermanifold T ∗ΠA together with a function Θ

such that |Θ|= 3 and {Θ,Θ}= 0.

A function with total degree 3 can be written as Θ = µ + γ + φ +ψ such that µ has
bi-degree (1,2), γ has bi-degree (2,1), φ has bi-degree (0,3), and ψ has bi-degree (3,0). The
condition {Θ,Θ}= 0 becomes the following equations

1
2
{µ,µ}+{γ,φ}= 0 (5.6)

1
2
{γ,γ}+{µ,ψ}= 0 (5.7)

{µ,γ}+{φ ,ψ}= 0 (5.8)

{µ,φ}= 0 (5.9)

{γ,ψ}= 0 (5.10)

Definition 5.4.2. Let Θ = µ + γ +φ +ψ be a proto-bialgebroid structure.

• (A,A∗) is a Lie bialgebroid if φ = ψ = 0. Then both A and A∗ are Lie algebroids.

• (A,A∗) is a quasi-Lie bialgebroid if ψ = 0. Then A is Lie algebroid.

• (A,A∗) is a Lie quasi-bialgebroid if φ = 0. Then A∗ is Lie algebroid.

In (ROYTENBERG, 1999), Roytenberg proves that a proto-bialgebroid induces a Courant
algebroid structure on A⊕A∗. More precisely,
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Theorem 5.4.3. If Θ = µ + γ +φ +ψ is a proto-bialgebroid structure on T ∗ΠA, then

⟨X1 ⊕α1,X2 ⊕α2⟩= {X1 ⊕α1,X2 ⊕α2}

ρΘ(X ⊕α)( f ) = {{X ,µ}, f}+{{α,γ}, f}

JX1 ⊕α1,X2 ⊕α2KJ
Θ = {{Θ,X1 ⊕α1},X2 ⊕α2}

define a structure of Courant algebroid on A⊕A∗.

Proof. We will show that the 3 proprieties of Definition 2.1.8 holds. For every e1,e2,e3 ∈ A⊕A∗,

Je1,Je2,e3KJ
ΘKJ

Θ = {{Θ,e1},{{Θ,e2},e3}}.

Using the Jacobi identity,

{{Θ,e1},{{Θ,e2},e3}= {{{Θ,e1},{Θ,e2}},e3}−{{Θ,e2},{{Θ,e1},e3}}.

But

{{{Θ,e1},{Θ,e2}},e3}= {{Θ,{e1,{Θ,e2}}},e3}+{{{Θ,{Θ,e2}},e1},e3}

and
{{Θ,e2},{{Θ,e1},e3}}= {Θ,{e2,{{Θ,e1},e3}}+{{Θ,{{Θ,e1},e3}},e2}.

Thus, (J1) holds if

{{{Θ,{Θ,e2}},e1},e3}−{Θ,{e2,{{Θ,e1},e3}}= 0.

After applying the Jacobi identity many times, the equation above holds.

For (J2), we must show that

{{e,Θ},{e1,e2}}= {e,{{Θ,e1},e2}+{{Θ,e2},e1}}.

But applying the Jacobi identity,

{e,{{Θ,e1},e2}= {e,{Θ,{e1,e2}}}−{e,{{Θ,e2},e1}}

and
{e,{Θ,{e1,e2}}}= {{e,Θ},{e1,e2}}−{θ ,{e,{e1,e2}}}.

By Proposition 5.1.1, we have that {e,{e1,e2}}= 0. Thus,

{e,{{Θ,e1},e2}+{{Θ,e2},e1}}= {{e,Θ},{e1,e2}},

and propriety (J2) holds.

Using the Jacobi identity on ρ(e)⟨e1 | e2⟩, we have

{{e,Θ},{e1,e2}}= {{{Θ,e},e1},e2}+{e1,{{Θ,e},e2}}.

Thus, (J3) holds.
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Let (A, [·, ·]A,ρA) be the Lie algebroid structure induced by µ and (A∗, [·, ·]A∗,ρA∗) be the
Lie algebroid structure induced by γ . Then, the Courant algebroid structure is given by

⟨X1 ⊕α1,X2 ⊕α2⟩=α2(X1)+α1(X2)

ρθ (X ⊕α)( f ) =ρA(X)+ρA∗(α)

JX1 ⊕α1,X2 ⊕α2KJ
θ =

(
[X1,Y2]A +L A∗

α1
(X2)− iα2dA∗X1 −ψ(α1,α2)

)
⊕
(
[α1,α2]A∗ +L A

X1
(α2)− iX2dAα1 −φ(X1,X2)

)
.

5.5 Twisting

Let Ω ∈ C∞(T ∗ΠM) with bi-degree (0,2). Let the transformation eΩ : C∞(T ∗ΠM) →
C∞(T ∗ΠM) defined by the series

eΩ(a) = a+{Ω,a}+ 1
2!
{Ω,{Ω,a}}+ 1

3!
{Ω,{Ω,{Ω,a}}}+ · · ·

In the Darboux coordinates, Ω = ∑i j
1
2Ωi jξiξ j, then eΩ acts on the coordinates as follows

eΩ(xi) = xi,

eΩ(ξi) = ξi,

eΩ(pi) = pi − 1
2

∂Ωi j

∂Xi
ξiξ j,

eΩ(θ i) = θ
i −Ωi jθ

j.

Applying eΩ(Θ), we have the so called twisted structure ΘΩ = φΩ + γΩ + µΩ +ψΩ,
where

µΩ =µ −{γ,Ω}+ 1
2
{{ψ,Ω},Ω},

φΩ =φ −{µ,Ω}+ 1
2
{{γ,Ω},Ω}− 1

6
{{{ψ,Ω},Ω},Ω},

γΩ =γ −{ψ,Ω},

ψΩ =ψ.

Note that if we start with a quasi-Lie bialgebroid, i.e., when ψ = 0, then the twisted
structure ΘΩ constitutes, once again, a quasi-Lie bialgebroid given by

µΩ =µ −{γ,Ω},

φΩ =φ −{µ,Ω}+ 1
2
{{γ,Ω},Ω},

γΩ =γ,

ψΩ =0.
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5.6 Poisson-Nijenhuis structure
In (ANTUNES, 2008) the definition of a Poisson quasi-Nijenhuis manifold is extended

to arbitrary proto-Lie algebroid. These extended structures are referred to as Poisson quasi-
Nijenhuis structures with background and specialized to yield the following definition for PqN
structures applicable to arbitrary Lie algebroids.

Let π ∈ Γ(∧2A) and N ∈ Γ(A∗⊗A) and consider the structures µN on A and γπ on A∗.
Additionally, we suppose that

N ◦π
♯ = π

♯ ◦N∗,

thus, N ◦π♯ is skew-symetric and define a bivector

πN =
1
2
{π,N}.

We ask the following compatibility condition for π and N:

Cµ(π,N) = {N,{π,µ}}+{π,{N,µ}}= 0. (5.11)

The Equation (5.11) implies that the bracket [·, ·]µN twisted by π is equal to the bracket [·, ·]π
deformed by N.

Lemma 5.6.1. For any π ∈ Γ(∧2A) and N ∈ Γ(A∗⊕A) in the Lie algebroid (A,µ), we have that

2{µN ,γπ}= {µ,Cµ(π,N)}.

Proof. Using the Jacobi identity, we have

2{{N,µ},{π,µ}}= {{N,µ},{π,µ}}+{{π,µ},{N,µ}}

{{{N,µ},π},µ}+{{{π,µ},N},µ}= {µ,Cµ(π,N)}.

Similar to T µN and [π,π]µ , if dµ -exact 1-forms generate Γ(A∗) locally, we have that

{µ,Cµ(π,N)}= 0 ⇐⇒Cµ(π,N) = 0.

We can define a PqN structure on a Lie algebroid as follows.

Definition 5.6.2. A Poisson quasi-Nijenhuis structure on a Lie algebroid (A,µ) is a triple
(π,N,φ) where π ∈ Γ

(
∧2A

)
, N ∈ Γ(A⊗A∗), φ ∈ Γ

(
∧3A∗) are such that N ◦ π♯ = π♯ ◦N∗,

dµφ = {µ,φ}= 0 and the following conditions hold:

[π,π]µ = {{π,µ},π}= 0, (5.12)

Cµ(π,N) = {N,{π,µ}}+{π,{N,µ}}= 0, (5.13)

Tµ(N) = {N,{N,µ}}−{N2,µ}= 2{π,φ}, (5.14)

dµ

N(φ) = {{N,µ},φ}= 0. (5.15)
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If φ = 0, we have the notion of PN structure on a Lie algebroid. Thus, we have the
following theorem, see (KOSMANN-SCHWARZBACH; RUBTSOV, 2010).

Theorem 5.6.3. Let N be a Nijenhuis (1, 1)-tensor and π a Poisson structure on (A,µ).

(i) The vanishing of
{

µ,Cµ(π,N)
}

is a necessary and sufficient condition for (µN ,γπ) to
define a Lie bialgebroid structure on (A,A∗). In particular, if π and N are compatible, then
(µN ,γπ) is a Lie bialgebroid structure.

(ii) If the dµ -exact 1-forms generate Γ(A∗) locally as a C∞(M)-module, then a Poisson bivector
π and a Nijenhuis tensor N define a PN structure on (A,µ) if and only if the pair (µN ,γπ)

defines a Lie bialgebroid structure on (A,A∗).

One can wonder if starting with PqN structure on (A,µ), then µN + γπ + φ define a
quasi-Lie bialgebroid, that is, if the following conditions hold

1
2
{µN ,µN}+{γπ ,φ}= 0, (5.16)

{γπ ,γπ}= 0, (5.17)

{µN ,γπ}= 0, (5.18)

{µN ,φ}= 0. (5.19)

To answer this question, first note that

{γπ ,φ}= {{π,µ},φ}= {π,{µ,φ}}−{{π,φ}µ}.

Since dµ

N(φ) = 0, using Equation (5.5), we can rewrite Equation (5.16) as

{µ,TµN}−{µ,{π,φ}}= 0.

Given that TµN = 2{π,φ}, the Equation (5.16) holds. Equations (5.17) and (5.19) are direct
consequences of Equations (5.12) and (5.15). Equation (5.18) is a direct consequence of Equation
(5.13) and Lemma 5.6.1.

If we assume that the dµ -exact 1-forms generate Γ(A∗) locally as a C∞(M)-module, we
can state the following relation between PqN structures and quasi-Lie bialgebroids.

Theorem 5.6.4. If the dµ -exact 1-forms generate Γ(A∗) locally as a C∞(M)-module, then a
Poisson bivector π and a Nijenhuis tensor N define a PqN-structure on (A,µ) if and only if the
pair µN + γπ +φ defines a Lie bialgebroid structure on (A,A∗) and dµφ = 0.

5.7 Deformation theorem
We now possess the necessary tools to extend Theorem 3.2.9 to any arbitrary Lie

algebroid. To achieve this objective, we will employ the twisting of a proto-bialgebroid and we
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use the relationship between quasi-Lie algebroids and PqN structures, as discussed above in the
preceding sections.

Theorem 5.7.1. Let (π,N,φ) be a PqN structure on (A,µ) and let Ω ∈ Γ(∧2A∗) such that
dµΩ = 0. Defining

N̂ = N +{π,Ω}= N +π
♯ ◦Ω

♭,

φ̂ = φ +{µN ,Ω}+ 1
2
{{Ω,γπ},Ω}= φ −dµ

N(Ω)− 1
2
[Ω,Ω]π .

If the dµ -exact 1-forms generate Γ(A∗) locally, then (π, N̂, φ̂) is a PqN structure on (A,µ).

Proof. Clearly N̂ ◦π♯ = π♯ ◦ N̂∗. Indeed,

(N +π
♯ ◦Ω

♭)◦π
♯ = N ◦π

♯+π
♯ ◦Ω

♭ ◦π
♯ = π

♯ ◦ (N +Ω
♭ ◦π

♯) = π
♯ ◦ N̂.

Let (γπ +µN +φ) be the quasi-Lie algebroid structure associated to (Π,N,φ). Let Ω ∈ Γ(∧2A∗),
then the twisted quasi Lie bialgebroid e−Ω(γπ +µN +φ) is given by

µΩ = µN +{γπ ,Ω},

γΩ = γπ ,

φΩ = φ +{µN ,Ω}+ 1
2
{{γπ ,Ω},Ω}.

By the Jacobi identity,

{γπ ,Ω}= {{π,µ},Ω}= {π,{µ,Ω}}+{{π,Ω},µ},

Since dµ(Ω) = {π,Ω}= 0, through Lemma 5.3.2, we have

{γπ ,Ω}= {{π,Ω},µ}= µ
π♯Ω♭,

and
µΩ = µN̂ .

Since ΘΩ is a proto-bialgebroid, we have that

1
2
{µN̂ ,µN̂}+{γπ , φ̂}= 0, (5.20)

{γπ ,γπ}= 0, (5.21)

{µN̂ ,γπ}= 0, (5.22)

{µN̂ , φ̂}= 0. (5.23)

Now, we will show that dµ φ̂ = {µ, φ̂}= 0.

{µ, φ̂}= {µ,φ}+{µ,{µN ,Ω}}+ 1
2
{µ,{{γπ ,Ω},Ω}}
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The first term on the right side vanishes since φ is dµ -closed. For the second one, applying the
Jacobi identity, we have

{µ,{{µ,N},Ω}}= {{µ,{µ,N}},Ω}−{{µ,N},{µ,Ω}}.

But, by hypothesis, {µ,Ω}= 0 and Lemma 5.3.7 says that {µ,{µ,N}}. For the third one, we
have that

{µ,{{γπ ,Ω},Ω}}= {{µ,{γπ ,Ω}},Ω}+{{γπ ,Ω},{µ,Ω}}.

But, dµΩ = 0 and

{µ,{{π,µ},Ω}}= {{µ,{π,µ}},Ω}+{{π,µ},{µ,Ω}}= 0.

Thus dµ(φ̂) = 0.

Through Equation (5.5), Equation(5.20) implies that

1
2
{µ,TµN}+{{π,µ}, φ̂}= 0.

But, through the Jacobi identity,

{{π,µ}, φ̂}= {π,{µ, φ̂}}−{{π, φ̂},µ}.

Since dµ φ̂ = 0, we have that
1
2
{µ,TµN}= {{π, φ̂},µ}.

Thus, if the dµ -exact 1-forms generate Γ(A∗) locally,

TµN = 2{π, φ̂},

and Condition (5.14) holds. The Equation (5.21) can be rewritten as

{γπ ,γπ}= {[π,π]µ ,µ}.

Thus, again, if the dµ -exact 1-forms generate Γ(A∗) locally, the Condition (5.12) holds.

Using Lemma 5.6.1 and Formula (5.22), we have

{µ,Cµ(π, N̂)}= 0,

and then Condition (5.13) holds. The Equation (5.23) is exactly the Condition (5.15).



75

CHAPTER

6
BI-DIFFERENTIAL CALCULI FROM A DIRAC

PERSPECTIVE AND AN INVOLUTIVITY
THEOREM

In this chapter, our aim is to explore results towards creating a more general involutivity
theorem than the one presented in (FALQUI et al., 2020). To this end, we will investigate two
methods, both of which revolve around the Lenard chains. The first approach is based on the
results presented in (DORFMAN, 1993), while the second employs what is known as bi-calculi
(CRAMPIN; SARLET; THOMPSON, 2000).

Let M be a manifold and let π1 and π2 be two Poisson bivector fields defined on M. Then
a sequence of functions { f j} j∈Z is said to satisfy the Lenard recursion relations, and is called a
Lenard chain, if

π1(d f j) = π2(d f j+1) for all j ∈ Z.

Under these hypotheses we can state the following important result:

Theorem 6.0.1. If two Poisson bivector fields π1,π2 are defined on the manifold M and there
exists a sequence of (smooth) functions { f j} j∈Z satisfying the Lenard recursion relations written
above, then the functions f j are pairwise in involution with respect to both Poisson brackets
{·, ·}1 and {·, ·}2.

If (M,π,N) is a PN manifold, we have that π
♯
N = N ◦π♯ defines a Poisson tensor and the

functions Ik =
1
k Tr(Nk), for k = 1,2, . . ., satisfy the following Lenard recursion relations

π
♯(dIk+1) = π

♯
N(dIk). (6.1)

Remark 6.0.2. The Equations (6.1) are also called Lenard-Magri relations.

To prove the Lenard-Magri relation, we start defining the set of Hamiltonian forms
(MAGRI; MOROSI, 1984).
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Definition 6.0.3. We define the set of Hamiltonian forms by

Ω
1
Ham(N) = {α ∈ Γ(T ∗M) | dα = dNα = 0}.

Proposition 6.0.4. The set of Hamiltonian forms Ω1
Ham(N) is N-invariant.

Proof. If α ∈ Ω1
Ham(N), then

d(N∗
α) = d ◦ iN(α) = (iN ◦d −dN)α = 0.

Since the anchor N is a Lie algebroid morphism, we have that N∗ ◦d = dN ◦N∗, thus

dN(N∗
α) = N∗(dα) = 0.

Proposition 6.0.5. Let (M,π,N) be a PN manifold. The Hamiltonian forms Ω1
Ham(N) define a

subalgebra with respect to the bracket [·, ·]π and the following property holds

N∗[α,β ]π = [N∗
α,β ]π = [α,N∗

β ], (6.2)

for all α,β ∈ Ω1
Ham(N)

Proof. First, note that [α,β ]π is a exact form. Indeed,

Lπ♯(α)(β ) = (d ◦ iπ♯(α)+ iπ♯(α) ◦d)β = d(π(α,β )),

Lπ♯(β )(α) = (d ◦ iπ♯(β )+ iπ♯(β ) ◦d)α = d(π(β ,α)).

Thus,
[α,β ]π =−dπ(α,β ).

Since ((T M, [·, ·]π ,π♯),dN) is a Lie bialgebroid, we have that

dN [α,β ]π = [dNα,β ]π +[α,dNβ ]π = [d(Nα),β ]π +[α,d(Nβ )]π = 0.

Now, note that

[α,β ]πN =−dπN(α,β ) =−d⟨π♯(α),N∗
β ⟩= [α,N∗

β ]π

but, we also have that

[α,β ]πN =−d⟨π♯(N∗
α),β ⟩= [N∗

α,β ]π .

Since π and N are compatible, we have

[α,β ]πN = [N∗
α,β ]π +[α,N∗

β ]π −N∗[α,β ]π ,

and the results follow.
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Theorem 6.0.6. Let α ∈ Ω1
Ham(N) and let α j+1 = (N∗) jα . For each l,k = 1,2 · · · , we have that

[αl,αk]π = 0. (6.3)

Moreover, if Ik =
1
k Tr(Nk), then

N∗dIk = dIk+1. (6.4)

Proof. Applaying Equation (6.2), we get that, for all l,k

[αK,αl]π = (N∗)k+l−2[α,α]π = 0.

The vanishing of the Nijenhuis Torsion is equivalent to that, for every X ∈ Γ(T M),

LNX(N) = NLX(N).

Thus,

⟨X ,dIk+1⟩= Tr(NkLX(N)) = Tr(Nk-1LNX(N)) = ⟨NX ,dIk⟩= ⟨X ,N∗dIk⟩.

Remark 6.0.7. The Nijenhuis tensor generates a hierarchy of Poisson tensors given by πk
N =Nkπ .

In fact, all the previous results hold for all πk
N , See (MAGRI; MOROSI, 1984).

If we assume that the Nijenhuis torsion does not vanish, then the Lenard-Magri relations
may not hold in general. Indeed, in (FALQUI et al., 2020), it is shown that if (M,π,N,φ) is a
PqN manifold, then the so-called generalize Lenard-Magri relations

dIk+1 = N∗dIk −φk−1 (6.5)

holds, where

⟨φl,X⟩= Tr
(
(iX TN)Nl

)
= Tr

(
Nl(iX TN)

)
, l ≥ 0.

The additional term φl modifies the usual formula {Ik, I j}π = {Ik−1, I j+1}π . Indeed,{
Ik, I j

}
π
=⟨dIk,π

♯(dI j)⟩= ⟨N∗dIk−1,π
♯(dI j)⟩−⟨φk−2,π

♯(dI j)⟩

=⟨dIk−1,Nπ
♯(dI j)⟩−⟨φk−2,π

♯(dI j)⟩

=⟨dIk−1,π
♯(N∗dI j)⟩−⟨φk−2,π

♯(dI j)⟩= ⟨dIk−1,π
♯(dI j+1)⟩

+ ⟨dIk−1,π
♯(φ j−1)⟩−⟨φk−2,π(dI j)⟩

=
{

Ik−1, I j+1
}

π
−
(
⟨φ j−1,π

♯(dIk−1)⟩+ ⟨φk−2,π
♯(dI j)⟩

)
.

In the case where torsion does not vanish, we have

{Ik, I j}−{Ik−1, I j+1}=−⟨φ j−1,π
♯(dIk−1)⟩+ ⟨φk−2,π

♯(dI j)⟩. (6.6)
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(FALQUI et al., 2020) also shows that there are some PqN manifolds in which the
functions Ik are not in involution with respect to {·, ·}π . Consider the R6 with canonical variables
(q1,q2,q3, p1, p2, p3) with the canonical Poisson tensor

π =
3

∑
i=1

∂pi ∧∂qi

and let

N =
3

∑
i=1

pi
(
∂qi ⊗dqi +∂pi ⊗dpi

)
+∑

i< j

(
∂qi ⊗dp j −∂q j ⊗dpi

)
+∑

i< j

1
(qi −q j)

(
∂p j ⊗dqi −∂pi ⊗dq j

)
.

After straightforward computations, we have that {I1, I2}π = {I1, I3}π = 0, but {I2, I3}π ̸= 0.

The theorem below is the first application of PqN manifolds in the theory of integrable
systems.

Theorem 6.0.8 ((FALQUI et al., 2020), Theorem 6). Let (M,π,N) be a PN manifold, Ω a closed
2-form on M such that [Ω,Ω]π = 0, N̂ = N −π♯Ω♭, and Ik =

1
k Tr(N̂k). Suppose that

1. dNΩ = dI1 ∧Ω;

2. iYkΩ = 0, where Yk = (N̂)k−1 −Xk and Xk = π♯(dIk);

3. {I1, Ik}= 0 for all k ≥ 2.

Then

i) (M,π, N̂,dNΩ) is a PqN manifold;

ii) {I j, Ik}= 0 for all j,k ≥ 1.

Since Example 3.2.10 satisfies the hypotheses of the Theorem above, see Theorem 7 of
(FALQUI et al., 2020), the well-known closed Toda chain’s constants of motion can be obtained
using the PqN structure.

6.1 Lenard scheme for Dirac structures
The works of Dorfman, see e.g. (DORFMAN, 1993), provide a way to interpret Nijenhuis

torsionas as a relation in a vector space. She also shows that the intersection of two Dirac
structures in a subtle way enables the construction of a Lenard-Magri scheme. We begin this
section by presenting the results that we need from (DORFMAN, 1993). Later, we connect these
results to Theorem 6 of (FALQUI et al., 2020) to understand it from a Dirac perspective.
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Definition 6.1.1. Let A be a vector space. A relation in A is a linear subspace R ⊂ A⊕A. We
define the dual of the relation R as

R∗ = {α ⊕β ∈ A∗⊕A∗ | β (X) = α(Y ),∀ X ⊕Y ∈ R}.

Definition 6.1.2. Let (A, [·, ·]A) be a Lie algebra. A Nijenhuis relation is a relation N ∈ A⊕A

such that, for X1,X2,Y1,Y2 ∈ A and α1,α2,α3 ∈ A∗ satisfying

X1 ⊕X2 ∈ N , Y1 ⊕Y2 ∈ N , ,α1 ⊕α2 ∈ N ∗, α2 ⊕α3 ∈ N ∗,

the real-valued function

T(N ) = ⟨α1, [X2,Y2]A⟩−⟨α2, [X2,Y1]A +[X1,Y2]A⟩+ ⟨α3, [X1,Y1]A⟩ (6.7)

vanishes.

Remark 6.1.3. The above definition also holds when the Lie algebra is replaced by a Loday
algebra, see (KOSMANN-SCHWARZBACH, 2012).

Proposition 6.1.4. The Equation (6.7) for the Nijenhuis torsion is equivalent to

T(N ) =−dAα1(X2,Y2)+dAα2(X2,Y1)+dAα2(X1,Y2)−dAα3(X1,Y1). (6.8)

Proof. By definition,

dAα1(X2,Y2) = X2(α1(Y2))−Y2(α1(X2))−α1([X2,Y2]A),

dAα2(X2,Y1) = X2(α2(Y1))−Y1(α2(X2))−α2([X2,Y1]A),

dAα2(X1,Y2) = X1(α2(Y2))−Y2(α2(X1))−α2([X1,Y2]A),

dAα3(X1,Y1) = X1(α3(Y1))−Y1(α3(X1))−α3([X1,Y1]A).

Since X1 ⊕X2 ∈ N , Y1 ⊕Y2 ∈ N , and α1 ⊕α2 ∈ N ∗, α2 ⊕α3 ∈ N ∗,

α1(X2) = α2(X1), α2(X2) = α3(X1),

α1(Y2) = α2(Y1), α2(Y2) = α3(Y1).

Thus,

dAα1(X2,Y2) = X2(α1(Y2))−Y2(α1(X2))−α1([X2,Y2]A),

dAα2(X2,Y1) = X2(α1(Y2))−Y1(α3(X1))−α2([X2,Y1]A),

dAα2(X1,Y2) = X1(α3(Y1))−Y2(α1(X2))−α2([X1,Y2]A),

dAα3(X1,Y1) = X1(α3(Y1))−Y1(α3(X1))−α3([X1,Y1]A).

Finally, we have

−dAα1(X2,Y2)+dAα2(X2,Y1)+dAα2(X1,Y2)−dAα3(X1,Y1) = T(N ).
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Example 6.1.5. Let N : A → A be a (1,1)-tensor. We can interpret the RN = graph(N) = {X ⊕
NX | X ∈ Γ(A)} as a relation in Γ(A)⊕Γ(A). Then, we have that the dual relation is given by
R∗

N = {α ⊕N∗α | α ∈ Γ(A∗)} ⊂ Γ(A∗)⊕Γ(A∗). Thus, we have that the Nijenhuis torsion of
RN is given by

⟨α, [NX ,NY ]A⟩−⟨N∗
α, [NX ,Y ]A +[X ,NY ]A⟩+ ⟨N∗

α,N[X ,Y ]A⟩. (6.9)

In (DORFMAN, 1987), the concept of Nijenhuis relation is presented as a generalization
of Nijenhuis Torsion.

Proposition 6.1.6. A vector bundle morphism N : A → A is a Nijenhuis tensor if and only if
RN = graph(N) defines a Nijenhuis relation.

Proof. The result follows directly from Equation (6.9), taking into account the non-degeneracy
of the pairing.

We can define a suitable compatibility condition between two Dirac structures using the
notion of Nijenhuis relation.

Definition 6.1.7. Two Dirac structures L1,L2 ⊂ A⊕A∗ are said to constitute a Dirac pair if the
set

R(L1,L2) = {X1 ⊕X2 | ∃α ∈ A∗,X1 ⊕α ∈ L2,X2 ⊕α ∈ L1} ⊂ A⊕A

is a Nijenhuis relation.

The Lenard scheme for Dirac pairs can be summarized in the following result:

Theorem 6.1.8. Let L1,L2 ∈ A⊕A∗ be a Dirac pair. Let there be given two sequence X0,X1, . . .∈
A and α−1,α0, . . . ∈ A∗ such that

Xi ⊕αi−1 ∈ L1, Xi ⊕αi ∈ L2. (6.10)

Assume that

dAα−1 = dAα0 = 0. (6.11)

Suppose that the following condition holds: if for some α ∈ A∗, dα(X ,Y ) = 0 for X and Y in
the projection of R(L1,L2) on A, then dα = 0. Then,

(a) all αi are closed;

(b) all fi ∈C∞(M) such that dA fi = αi are in involution with respect to the Poisson brackets
associated with L1 and L2:

{ fi, f j}L1 = { fi, f j}L2 = 0. (6.12)



6.1. Lenard scheme for Dirac structures 81

Proof. First, note that, by definition, for every Y1 ⊕Y2 ∈ R(L1,L2), there exists some ξ ∈ A∗

such that Y1 ⊕ξ ∈ L2 and Y2 ⊕ξ ∈ L1. Thus, using the isotropic property of the Dirac structure
and condition 6.10, we have that

⟨Y1 ⊕ξ | Xi ⊕αi⟩= ⟨Y2 ⊕ξ | Xi ⊕αi−1⟩= 0,

which implies that

αi(Y1)+ξ (Xi)−αi−1(Y2)−ξ (xi) = αi(Y1)−αi−1(Y2) = 0.

Since Y1 ⊕Y2 is an arbitrary element in R(L1,L2), we conclude that

αi−1 ⊕αi ∈ R∗(L1,L2).

Now, suppose by induction that, for every i ≤ n, dαi = 0. Since L1 and L2 constitute a pair of
Dirac structures, for arbitrary Y1 ⊕Y2, Y ′

1 ⊕Y ′
2 ∈ R(L1,L2), there holds

αn−i([Y2,Y ′
2])−αn([Y2,Y ′

1]+ [Y1,Y ′
2])+αn+1([Y1,Y ′

1]) = 0,

or, equivalently,

dαn−i(Y2,Y ′
2)−dαn(Y2,Y ′

1)−dαn(Y1,Y ′
2)+dαn+1(Y1,Y ′

1) = 0.

Using condition 6.11, we can conclude that dαn+1(Y1,Y ′
1) = 0 for arbitrary Y1,Y ′

1 from the
projection of R(L1,L2). By hypothesis, this is enough to conclude that dαn+1 = 0.

Now we prove (b). Given i, j arbitrary. Without loss of generality, we can suppose i < j.
thus

Xi+1 ⊕d fi ∈ L1, Xi ⊕d fi ∈ L2,

X j ⊕d f j−1 ∈ L1, X j ⊕d f j ∈ L2.

By isotropy of L1, we have that

⟨Xi+1 ⊕d fi,X j ⊕d f j−1⟩= 0 =⇒ ⟨Xi+1,d f j−1⟩=−⟨X j,d fi⟩.

By isotropy of L2, we have that

⟨Xi ⊕d fi,X j ⊕d f j⟩= 0 =⇒ ⟨Xi,d f j⟩=−⟨X j,d fi⟩.

Therefore
{ fi, f j}= ⟨Xi,d f j⟩= ⟨Xi+1,d f j−1⟩

Let s = j− i, then repeating it s-times, we obtain that

{ fi, f j}= { fi+s, f j−s}= { f j, fk}.

So, as we wish, { fi, f j}= 0 for arbitrary i, j.
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If we consider one of the Dirac structures as the graph(π) for some Poisson vector field,
we have the following

Corollary 6.1.9. Let (M,π) be a Poisson manifold and L ⊂ T M⊕T ∗M an isotropic subbundle.
If there is a sequence {αk} of closed 1-form such that, for every k,

π(αk)⊕αk+1 ∈ L,

then, for all i, j, [
αi,α j

]
π
= 0.

In particular, if αi = d fi, then

{ fi, f j}= 0.

Remark 6.1.10. Note that, with the same argument, we could ask π(d fk+1)⊕d fk ∈ L instead
π(d fk)⊕d fk+1 ∈ L.

Let (M,π,N) be a PN manifold and Ik = 1
k+1 Tr(Nk). Thanks to the Lenard-Magri

relations, we get that

Nπ(dIk)⊕dIk = π(dIk+1)⊕dIk ∈ graph(Nπ).

Then, the Corollary 6.1.9 applies to the sequence {dIk}, choosing (M,π) as the Poisson manifold
and L = graph(Nπ)⊂ T M⊕T ∗M as the graph of the Poisson structure Nπ .

However, if (M,π,N,φ) is a PqN manifold, the Lenard-Magri relation does not hold,
thus, if we want to understand the involutivity of the family {Ik} of a PqN manifold using the
Corollary 6.1.9, we must search for a more appropriate Lagrangian subbundle.

For a PqN manifold (M,π, N̂,φ) we define Ik =
1
k Tr(N̂k) and Xk = π♯(dIk). Set D as the

distribution generated by {Xk}, that is,

Dp = Span{(Xk)p}.

Now, define a Lagrangian subbundle by

Lp := {Xp ⊕α | Xp ∈ Dp,α ∈ D⊥
p }.

Proposition 6.1.11. Let (M,π, N̂,φ) be a PqN manifold, Ik =
1
k Tr(N̂k) and Xk = π♯(dIk). If

the family {Ik} is involutive, then the Poisson manifold (M,π) and the Lagrangian subbundle
L = {X ⊕α) | X ∈ D,α ∈ D⊥} satisfy the hypotheses of the Corollary 6.1.9.

Proof. By hypothesis,

{Ik, I j+1}= dIk+1(Xk) = 0 for all j,k.
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Thus, for all k, dIk+1 ∈ D⊥ and
Xk ⊕dIk+1 ⊂ L.

Now, let L′ be the gauge transformation of L by a closed 2-form ω , that is,

L′ := Tω(L) = {X ⊕ (ω♭(X)+α) | X ∈ D,α ∈ D⊥}.

Proposition 6.1.12. Let (M,π,N,φ) be a PqN manifold. Suppose that, for some closed 2-form,
the previous Lagrangian subbundle L′ satisfies the Corollary 6.1.9. Then,

ω
♭(X j)(Xk) = dI j+1(Xk), for all j,k. (6.13)

Remark 6.1.13. Note that, to apply Corollary 6.1.9, it is only necessary L to be a Lagrangian
subbundle, that is, it is not necessary ω to be a closed 2-form.

Proposition 6.1.14. Let (M,π, N̂,φ) be a PqN manifold, ω be a closed 2-form, Ik =
1
k Tr(N̂k)

and Xk = π♯(dIk). If the sequence dIk, the Poisson manifold (M,π) and the subbundle L′ =

Tω(L) = {X ⊕ω♭(X)+α) | X ∈ D,α ∈ D⊥} satisfy the hypotheses of Corollary 6.1.9, then, for
every 2-form ω ′ such that

ω
′(Xk) ∈ D⊥, for all k,

Tω ′+ω satisfies the hypotheses of Corollary 6.1.9.

Proof. If ω(Xk)−dIk+1 ∈ D⊥, so does ω(Xk)+ω ′(Xk)−dIk+1 ∈ D⊥.

Finally, we can reinterpret the Theorem 6.0.8 as follows:

Theorem 6.1.15. Let (M,π, N̂,φ) be a PqN manifold, Ik =
1
k Tr(N̂k), and W = Span{π♯(dIk)}.

Suppose that there exists a 2-form Ω and α ∈ D⊥ such that:

(i) φ = α ∧Ω;

(ii) Ω(X j,Yk) = 0, where Yk = N̂k−1π♯(α)−Xk and Xk = π♯(dIk).

Suppose that the Poisson tensor π is invertible. Define ω = π−1N̂ −2Ω, then

L′ = {X ⊕ (ω♭(X)+α) | X ∈ D,α ∈ D⊥}

satisfies the hypothesis of Corollary 6.1.9.

Proof. Analogously to the demonstration presented in (FALQUI et al., 2020), we have that

TN̂(X ,Y ) = π
♯ (iY iX (α ∧Ω)) = π

♯ (iY (⟨α,X⟩Ω−α ∧ iX Ω))

= π
♯ (⟨α,X⟩ iY Ω−⟨α,Y ⟩ iX Ω+(iY iX Ω)α)

= ⟨α,X⟩
(

π
♯
Ω

♭
)
(Y )−⟨α,Y ⟩

(
π
♯
Ω

♭
)
(X)+Ω(X ,Y )π

♯(α)
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for all vector fields X ,Y , so that

iX TN̂ = ⟨α,X⟩π
♯
Ω

♭−
(

π
♯
Ω

♭
)
(X)⊗α +π

♯(α)⊗ iX Ω.

Thus,〈
φk,X j

〉
= Tr

(
N̂k (iX jTN̂

))
= Tr

(
N̂k

(〈
α,X j

〉
π
♯
Ω

b −
(

π
♯
Ω

b
)
(X j)⊗α +π

♯(α)⊗ iX jΩ

))
=
〈
α,X j

〉
Tr

(
N̂k

π
♯
Ω

b
)
−Tr

((
N̂k

π
♯
Ω

b
)
(X j)⊗α

)
+Tr

((
N̂k

π
♯(α)

)
⊗ iX jΩ

)
.

Since
〈
α,X j

〉
= 0,

Tr
((

N̂k
π
♯
Ω

b
)
(X j)⊗α

)
=
〈

α,
(

N̂k
π
♯
Ω

b
)
(X j)

〉
=−Ω(X j, N̂k

π
♯(α))

and

Tr
((

N̂k
π
♯(α)

)
⊗ iX jΩ

)
= Ω(X j, N̂k

π
♯(α)),

we have that 〈
φk,X j

〉
= 2Ω(X j, N̂k

π
♯(α)).

Now, thanks to assumption 2, we can substitute N̂kπ♯(α) with Xk+1. Thus,〈
φk,X j

〉
=−2Ω(Xk+1,X j). (6.14)

The equation 6.14 implies that, for every k, it exists some αk ∈ D⊥ such that

φk =−Ω
♭(Xk+1)+αk.

Thanks to the generalized Lenard-Magri equation, we have that

dIk+1 =
ˆ̂NdIk +φk−1 = π

−1 ˆ̂NXk −Ω
♭(Xk)+αk−1 = ω

♭(Xk)+αk−1.

Therefore,

Xk ⊕dIk+1 ⊂ L′.

Example 6.1.16. Let (M,π,N) be a PN manifold, Ω be a closed 2-form on M satisfying the
hypotheses of the theorem 6 of (FALQUI et al., 2020). Let N̂ = N+πΩ♭, then (M,π, N̂,dI1∧Ω)

satisfy Theorem 6.1.15.

In particular, we have that the n-particle closed Toda satisfies the theorem 6.1.15. Let us do
some computation to the example “n = 2” presented in section 4.1 of (FALQUI; MENCATTINI;
PEDRONI, 2023). Consider the following PqN manifold
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π =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 , N̂ = N +π
♯
Ω

♭ =


p1 0 0 1
0 p2 −1 0
0 −V (q1 −q2) p1 0

V (q1 −q2) 0 0 p2,

 ,

where

N =


p1 0 0 0
0 p2 0 0
0 0 p1 0
0 0 0 p2

 and Ω =V (q1 −q2)dq1 ∧dq2 +d p1 ∧d p2.

We define the following Dirac structure

L′
p =

{
Xp ⊕ω (Xp)+α | Xp ∈ Dp,α ∈ D⊥

p

}
,

where ω = π−1N̂ −2Ω♭ = Ω♭.

If we want to apply the Theorem 6.1.15 on the structures L′ and graph(π), we must have
that

ω
(
X j
)
+α = dI j+1 ⇒ ω

(
X j,Xk

)
= dI j (Xk)∀ j,k,

that is

ω (X1,X2) = dI2 (X2) = 0,

but, in this case, we have that


dI1 = d p1 +d p2

dI2 = p1d p1 + p2d p2 +
∂V
∂q1

dq1 +
∂V
∂q2

dq2

X1 = ∂q1 +∂q2

X2 = p1∂q1 + p2∂q2 − ∂V
∂q1

∂ p1 − ∂V
∂q2

∂ p2

,

ω =V (q1 −q2)dq1 ∧dq2 + p1dq1 ∧dp1 + p2dq2 ∧dp2 +dp1 ∧dp2.

Then,
ω

♭(X1) = p1d p1 + p2d p2 −V (q1 −q2)dq1 +V (q1 −q2)dq2.

Hence,

ω(X1,X1) = 0 = dI2(X1),

ω(X1,X2) = (p2 − p1)V − (p2 − p1)
∂V
∂q2

.
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Thus, the equation 6.13 is satisfied only if V = ∂V
∂q2

, that is,

V = Aeq2−q1, where A ∈ R.

6.2 Bi-differential calculi
A bi-differential calculi consists of a pair of two distinct differential operators over

the same graded algebra Γ(
∧•A). These calculi are compatible in a certain sense. One of the

applications of this framework is that, under certain conditions, we can use the pair of differential
operators to reconstruct a Lenard-Magri sequence on a Poisson-Nijenhuis manifold (CRAMPIN;
SARLET; THOMPSON, 2000).

First, we define a differential calculus.

Definition 6.2.1. A differential over a graduated algebra
∧•A is a linear map d : ∧p A →∧p+1A

with the proprieties

d2 = 0,

d(P∧Q) = (dP)∧Q+(−1)pP∧dQ,

where P ∈ ∧pA and Q ∈
∧•A. The pair (A,d) is called a differential graded algebra.

Now, we can define a bi-differential calculi.

Definition 6.2.2. We call bi-diferential calculi a triple (
∧•A,d1,d2) that comprises a graded

algebra (
∧•A) and two differential, d1 and d2, satisfying the condition

d1 ◦d2 +d2 ◦d1 = 0.

Suppose that the first cohomology group H1
d1

is trivial, that is, all d1-closed 1-sections
are d1-exact. If there is a non-vanishing function f0 ∈ such that

d1( f0) = 0

We can inductively construct a sequence of 1-sections that are d1-closed and d2-closed.

Let α1 = d2( f0), then

d1(α1) = d1(d2( f0)) =−d2(d1( f0)) = 0.

Since H1
d1

is trivial, there is some f1 ∈ ∧0A such that

α1 = d1( f1).

Now, we suppose by induction that, for some m ∈ N, every k ≤ m we have that

d1(αk) = 0,
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where αk = d2( fk−1). Since H1
d1

is trivial, there is some fm ∈ ∧0A such that

αm = d1( fm).

Thus, defining αm+1 = d2( fm), we have that

d1(αm+1) = d1(d2( fm)) =−d2(d1( fm)) = 0.

In this way, we can extend the sequence infinitely.

f0 f1 f2

α1 α2 α3

0 0

d
2

d
2 d

2

0

d 1 d 1 d 1

d
1 d

1

. . .

If L ⊂ E is a Dirac structure, By Proposition 2.3.6, the Courant algebroid structure of E

descends to a Lie algebroid structure on L. This allows us to obtain a differential operator dL that
acts on Γ(∧•L∗). Suppose we have a second Courant algebroid structure on E. If L is also Dirac
within this second structure, we will have a second differential operator dL′ that acts on Γ(∧•L∗).
A natural question is:

Question 1. Let E and E ′ be two different Courant algebroids structures over the same vector
bundle and suppose that L is a Dirac structure in both E and E ′. Is it true that dL and d̂L form a
bicalculi?

The following theorem says that the answer to the Question 1 is “not always”.

Theorem 6.2.3. Let (M,π, N̂,φ) be a PqN manifold. Suppose that, for some D ⊂ T ∗M,

L = {α ⊕X | α ∈ D,X ∈ D⊥}

is a Dirac structure in both

TM = ((T ∗M, [·, ·]π ,π♯),d,0),

TM′ = ((T ∗M, [·, ·]π ,π♯),dN ,φ).

Then, for all f ∈C∞(M), α ⊕X , β ⊕Y ∈ Γ(L)

(dL(dL′ f )+dL′(dL f ))(α ⊕X ,β ⊕Y ) = φ(X ,Y,π♯(d f )).
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Proof. First, note that, for every f ∈C∞(M) and X ,Y ∈ Γ(T M), we have that

dN(d f )(X ,Y ) =−d f ([X ,Y ]N)+NX(d f (Y ))−NY (d f (X)),

d (dN f )(X ,Y ) =−dN f ([X ,Y ])+X (dN f (Y ))−Y (dN f (X)) .

Let J·, ·K1 and J·, ·K2 be the Courant algebroid bracket of TM and TM′, respectively. We
will denote by (L, [·, ·]L,ρ1) the Lie algebroid structure in L that descends of TM, and by dL its
differential operator, and we will denote by (L, [·, ·]L′,ρ2) and dL′ the ones associated to TM′.

By definition, for every (X ⊕α),(Y ⊕β ) ∈ L and f ∈C∞(M),

dL f (X ⊕α) =Lρ1(X⊕α)( f ) = LX( f )+L
π♯(α)( f ) = d f (X)−dπ f (α),

dL′ f (X ⊕α) =Lρ2(X⊕α)( f ) = LNX( f )+L
π♯(α)( f ) = dN f (X)−dπ f (α),

and

JX ⊕α,Y ⊕β K1 =
(
[X ,Y ]+L π

α (Y )−L π

β
(X)

)
⊕ ([α,β ]π +LX(β )−LY (α)) ,

JX ⊕α,Y ⊕β K2 =
(
[X ,Y ]N +L π

α (Y )−L π

β
(X)

)
⊕
(
[α,β ]π +L N

X (β )−L N
Y (α)+φ(X ,Y, ·)

)
.

Since d2
L = 0, we have that

dπ f ([α,β ]π +LX(β )−LY (α)) =d f
(
[X ,Y ]+L π

α (Y )−L π

β
(X))

)
−X (d f (Y )−dπ f (β ))−π

♯
α (d f (Y )−dπ f (β ))

+Y (d f (X)−dπ f (α))+π
♯
β (d f (X)−dπ f (α))

Since d2
L′ = 0, we have that

dπ f
(
[α,β ]π +L N

X (β )−L N
Y (α)+ φ(X ,Y, ·)) = dN f

(
[X ,Y ]N +L π

α (Y )−L π

β
(X))

)
−NX (dN f (Y )−dπ f (β ))−π

♯
α (dN f (Y )−dπ f (β ))

+NY (dN f (X)−dπ f (α))+π
♯
β (dN f (X)−dπ f (α))

dL′dL f (X ⊕α,Y ⊕β ) =−dL f (JX ⊕α,Y ⊕β K2)+Lρ2(X⊕α)(dL f (Y ⊕β ))

−Lρ2(Y⊕β )(dL f (X ⊕α))

= dπ f ([α,β ]π +L N
X (β )−L N

Y (α)+φ(X ,Y, ·))

−d f ([X ,Y ]N +L π
α (Y )−L π

β
(X))

+NX(d f (Y )−dπ f (β ))+π
♯(α)(d f (Y )−dπ f (β ))

−NY (d f (X)−dπ f (α))−π
♯(β )(d f (X)−dπ f (α))
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dLdL′ f (X ⊕α,Y ⊕β ) =−dL′ f (JX ⊕α,Y ⊕β K1)+Lρ1(X⊕α)(dL′ f (Y ⊕β ))

−Lρ1(Y⊕β )(dL′ f (X ⊕α))

= dπ f ([α,β ]π +LX(β )−LY (α)))

−dN f ([X ,Y ]+L π
α (Y )−L π

β
(X))

+X(dN f (Y )−dπ f (β ))+π
♯(α)(dN f (Y )−dπ f (β ))

−Y (dN f (X)−dπ f (α))−π
♯(β )(dN f (X)−dπ f (α))

and, thus,
(dL(dL′ f )+dL′(dL f ))(α ⊕X ,β ⊕Y ) = φ(X ,Y,π♯(d f )).

Remark 6.2.4. On the other hand, if we start from a PN manifold, the Theorem 6.2.3 shows that
for any choice of D ⊂ T ∗M such that L is a Dirac structure, dL ◦dL′ +dL′ ◦dL = 0 on C∞(M).

Example 6.2.5 (The 4-partle closed Toda case). Consider the PqN structure associated with the
closed Toda lattice as described in Example (3.2.10). As proved in (FALQUI et al., 2020), we
have that

i) [Ω,Ω]π = 0;

ii) dNΩ = dI1 ∧Ω, where Ik =
1
k Tr(N̂k);

iii) iYkΩ = 0, where Yk = (N̂)k−1X1 −Xk and Xk = π♯(dIk);

iv) {I1, Ik}= 0 for all k ≥ 2.

First, note that since N̂ = N +π♯Ω♭, we have dN̂ = dN +d
π♯Ω♭ . Since d

π♯Ω♭ =−[Ω, ·]π , see e.g.,
(FALQUI et al., 2020), condition i) implies that d

π♯Ω♭(Ω) = 0 and dN̂Ω = dNΩ.

Let
D⊥ = Ker(Ω♭) = {X ∈ Γ(T M) | Ω

♭(X) = 0}.

Condition ii) implies that, for all Z1,Z2 ∈ D⊥, φ(Z1,Z2, ·) = 0. We will use the Theorem 2.3.11
to show that the Lagrangian subbundle

L = {X ⊕α | α ∈ D,X ∈ D⊥}

is a Dirac structure in both TM and TM′.

First, note that D⊥ is closed with respect to the usual commutator of vector fields. Indeed,
since dΩ = 0 we have that, for all X ,Y ∈ D⊥ and Z ∈ Γ(T M),

0 = dΩ(X ,Y,Z) = LX(Ω(Y,Z))−LY (Ω(X ,Z))+LZ(Ω(X ,Y ))

−Ω([X ,Y ],Z)+Ω([X ,Z],Y )−Ω([Y,Z],X)

=−Ω([X ,Y ],Z).
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Since Z is arbitrary, we have that [X ,Y ] ∈ D⊥.

Now, we show that D⊥ is closed with respect to the bracket [·, ·]N̂ . Since dNΩ = Φ =

dI1 ∧Ω, we have that

0 = φ(X ,Y,Z) = LNX(Ω(Y,Z))−LNY (Ω(X ,Z))+LNZ(Ω(X ,Y ))

−Ω([X ,Y ]N ,Z)+Ω([X ,Z]N ,Y )−Ω([Y,Z]N ,X)

=−Ω([X ,Y ]N ,Z),

for all X ,Y ∈ D⊥ and Z ∈ Γ(T M). Thus [X ,Y ]N ∈ D⊥.

Condition iii) ensures that all Yk ∈ D⊥. It is easy to check that D⊥ is generated by
{∂ p1,∂ p2,∂ p3,∂ p4,∂q2,∂q3}, and D by {dq1,dq4}. So, since

[dqi,dq j]π = dπ(dqi,dq j) = 0,

D is closed with respect to [·, ·]π . Therefore, the hypotheses of the Theorem 2.3.11 are verified
for both TM and TM′. Thus, by Theorem 6.2.3,

dL ◦dL′ +dL′ ◦dL = 0

on C∞(M).
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APPENDIX

A
DIFFERENTIAL CALCULUS ON LIE

ALGEBROIDS

In this section, we will summarize the main definitions and results regarding the theory
of differential calculus on Lie algebroids. Given a vector bundle A, we can define two graded
algebras: ∧•A =

⊕
k∧kA and ∧•A∗ =

⊕
k∧kA∗, both with the product given by the wedge

product.

Let X ∈ Γ(A). We can define the interior product iX on ∧•A∗ as follows: for every
η ∈ Γ(

∧p A∗), the action of iX(η) ∈ Γ(∧p−1A∗) on X1, . . . ,Xp−1 ∈ Γ(A) is given by:

iX(η)(X1, . . . ,Xp−1) = η(X ,X1, . . . ,Xp−1).

The interior product iX is a derivation of degree −1 of the exterior algebra
∧•A∗, that is,

for every η ∈ Γ(
∧p A∗) and ξ ∈ Γ(

∧•A∗)

iX(η ∧ξ ) = (iX(η))∧ξ +(−1)p
η ∧ (iX(ξ )).

The interior product can be extended for any multisection of A: let P ∈ Γ(
∧p A), iP is

the linear endomorphism of
∧•A∗ of degree −p such that, for every η ∈ Γ(

∧q A∗), the action of
iP(η) ∈ Γ(

∧p−1 A∗) on Q ∈ Γ(
∧q−p A) is given by

(iPη)(Q) = (−1)(p−1) p
2 η(P∧Q).

For p > 1, iP is no more a derivation of P ∈ Γ(
∧p A), but we have that, for every P ∈ Γ(

∧p A)

and Q ∈ Γ(
∧q A),

iQ ◦ iP = i(P∧Q).

(MACKENZIE, 2005) defines a Lie algebroid structure on A as follows:
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Definition A.0.1. A Lie algebroid is a triple (A, [·, ·]A,ρA) consisting of a vector bundle A, a
Lie bracket [·, ·]A : Γ(A)×Γ(A)→ Γ(A) and a morphism of vector bundles ρA : Γ(A)→ Γ(T M),
called anchor, satisfying the compatibility condition

[X1, f X2]A = f [X1,X2]A +(LρA(X1) f )X2, (A.1)

ρ ([X1,X2]A) = [ρ (X1) ,ρ (X2)]A, (A.2)

for all X1,X2 ∈ Γ(A) and f ∈C∞(M).

Example A.0.2. If M is any manifold and [·, ·] is the Lie bracket of vector fields, then (T M, [·, ·], Id)

is a Lie algebroid.

Example A.0.3. Let π be a Poisson bivector field. The triple (T ∗M, [·, ·]π ,π♯) is a Lie algebroid
over M, where π♯ : T ∗M → T M is defined by π♯(α)(β ) = π(α,β ) and

[α,β ]π = Lπ♯(α)(β )−Lπ♯(β )(α)−d(π(α,β )).

We refer to (VAISMAN, 1994) for more details.

Example A.0.4. Let N : T M → T M be a tensor of type (1,1). If TN(X ,Y ) = 0 for all X ,Y ∈
Γ(T M), see Definition 2.2.5, then the triple (T M, [·, ·]N ,N) is a Lie algebroid, where

[X ,Y ]N = [NX ,Y ]+ [X ,NY ]−N[X ,Y ].

Remark A.0.5. Note that if N = Id we recover Example A.0.2.

Let (A, [·, ·]A,ρA) be a Lie algebroid, then we can define a Cartan-like calculus on the
vector bundle A. The following definition generalizes the concept of Cartan’s differential.

Definition A.0.6. Let (A,ρA, [·, ·]A) be a Lie algebroid, we define a differential operator dA in∧• A∗ as follows: given σ ∈ Γ(∧kA∗), for all X1, . . . ,Xk+1 ∈ Γ(A),

(dAσ)(X1, . . . ,Xk+1) =∑
i< j

(−1)i+ j
σ([Xi,X j]A,X1 . . . , X̂i, . . . , X̂ j, . . . ,XK+1)

+
k+1

∑
i=1

(−1)i+1LρA(Xi)(σ(X1, . . . , X̂i, . . . ,Xk+1)).

(A.3)

It can be checked that dA is a derivation of degree 1 and that d2
A = 0 (MACKENZIE,

2005). We can provide a second graded algebraic structure to ∧•A, extending the notion of the
Schouten bracket and Lie derivative to an arbitrary Lie algebroid.

Definition A.0.7. Let φ and ψ be two endormorphism of graded algebra A =
⊕

k∈ZAk. Supouse
that φ and ψ have degrees p and q, respectively, then we define their graded commutator by

[φ ,ψ] = φ ◦ψ − (−1)pq
ψ ◦φ .
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Proposition A.0.8. Let (A, [·, ·]A,ρA) be a Lie algebroid. For each P ∈ Γ(
∧p A) and Q ∈ Γ(

∧q A),
there exists a unique element [P,Q]A ∈ Γ(

∧p+q−1 A), called the Schouten bracket of P and Q,
defined by

i[P,Q]A = [[iP,dA], iQ],

such that:

(i) it satisfies [X , f ]A = ⟨ρA(X),d f ⟩= X(dA f ), for all X ∈ Γ(A) and for all f ∈C∞(M);

(ii) it is antisymmetric in the graded sense, i.e., for every P ∈ ∧pA and Q ∈ ∧qA,

[P,Q]A =−(−1)(p−1)(q−1)[Q,P]A;

(iii) for every P1 ∈ ∧p1A, [P1, ·]A is a derivation of the graded algebra (
∧• A,∧), i. e.,

[P1,P2 ∧P3]A = [P1,P2]A ∧P3 +(−1)(p1−1)p2P2 ∧ [P1,P3]A,

for all P2 ∈ ∧p2A and P3 ∈
∧• A.

Remark A.0.9. The Schouten bracket defined on a Lie algebroid generalizes various brackets in
graded algebras (∧•A) of a vector bundle A. For instance:

• If the Lie algebroid is the standard Lie algebroid in the tangent bundle of a manifold,
(T M, [·, ·], Id), we recover the standard Schouten bracket for multivector fields. We refer
to (MARLE, 1997).

• If π is a Poisson tensor on a manifold M, then the Schouten bracket associated with the
Lie algebroid (T ∗M, [·, ·]π ,π♯) yields the Koszul bracket. See (FIORENZA; MANETTI,
2012).

Proposition A.0.10. Let (A,ρA, [·, ·]A) be a Lie algebroid on a smooth manifold M. For every
X ∈ Γ(A) there is a unique derivation of degree 0 of the algebra

∧• A∗, denoted by L A
X and called

the Lie derivative with respect to X , that satisfies:

(i) for every f ∈C∞(M),
L A

X ( f ) = iρA(X)d f ;

(ii) for every η ∈
∧
(A∗) of degree p > 0,

L A
X (η)(Y1, . . . ,Yp) = iρA(X)d(η(Y1, . . . ,Yp))+

p

∑
k=1

(−1)k
η([X ,Yi]A,Y1, . . . ,Ŷi, . . . ,Yp),

where Y1, . . .Yp ∈ Γ(A) and, as usual, the entries with hat are to be omitted.

For P ∈
∧p A, the Lie derivative LX will be defined by

L A
X (P) = [X ,P]A.
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A.1 Diferential Lie algebra
In this section, we will study the differential Lie algebras and their generalization: differ-

ential pre-Lie algebras. Differential Lie algebras form the pure algebraic framework of Lie alge-
broids. We will follow the definitions and notations outlined in (KOSMANN-SCHWARZBACH;
MAGRI, 1990).

Definition A.1.1. Let K be the field of real or complex numbers, and let A be an associative and
commutative K-algebra whit unit. Let E be a finitely generated projective A-module. Let [·, ·]µ
be an antisymmetric, K-bilinear map, from E ×E to E. We say that (E, [·, ·]µ) is a differential
pre-Lie algebra over A if there exists an A-linear map L µ from E to the K-vector space of
derivations of A such that

[X , fY ]µ = f [X ,Y ]µ +L µ

X ( f )Y,

for all X and Y in E, and for all f in A.

Remark A.1.2. Here we will assume that the A-module E has an element X ∈ E such that f ∈ A

and f X = 0 imply f = 0. Moreover, we will suppose that E is a finitely generated protective
A-module, thus (E∗)∗ ∼= E.

If we add the requirement that [·, ·]µ satisfies the Jacobi identity, we get the concept of
differential Lie algebra. More precisely,

Definition A.1.3. Let (E, [·, ·]µ) be a differential pre-Lie algebra over A. We say that (E, [·, ·]µ)
is a differential Lie algebra over A if [·, ·]µ is a K-Lie algebra structure on E and L µ defines an
E-module structure on A.

An important consequence of the definition of differential Lie algebra is that L µ is a
Lie algebra morphism from (E, [·, ·]µ) to the algebra of derivations of the ring A, that is,

L µ

[X ,Y ]µ
= [L µ

X ,L µ

Y ],

for all X ,Y ∈ E.

Since E is finitely generated and projective, we can identify the A-module of q-linear
skewsymmetric maps from E to A with ∧q(E∗). We call graded pre-differential algebra a graded
commutative algebra, with a derivation of degree 1. Note that this derivation is not necessarily of
square 0. Then, we have an equivalence between graded pre-differential algebra on ∧•(E∗) and
differential pre-Lie algebra on E.

Proposition A.1.4. Let (E, [·, ·]µ) be a differential pre-Lie algebra, then there is a correspondent
degree one derivation on ∧•(E∗) defined as in Equation (A.3)

(dµσ)(X1, . . . ,Xk+1) =∑
i< j

(−1)i+ j
σ([Xi,X j]µ ,X1 . . . , X̂i, . . . , X̂ j, . . . ,XK+1)

+
k+1

∑
i=1

(−1)i+1L µ

Xi
(σ(X1, . . . , X̂i, . . . ,Xk+1))

(A.4)
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that make ∧•(E∗) a graded pre-differential algebra.

Conversely, if (∧•(E∗),dν) is a differential pre-Lie algebra, then we can define

L ν
X ( f ) = ⟨dν f ,X⟩

and
⟨α, [X ,Y ]ν⟩=−dνα(X ,Y )+L ν

X (⟨α,Y ⟩)−L ν
Y (⟨α,X⟩),

where X ,Y ∈ E, α ∈ E∗, and f ∈ A. Moreover, (E, [·, ·]ν) is a differential pre-Lie algebra.

Proposition A.1.5. The differential pre-Lie algebra (E, [·, ·]µ) over A is a differential Lie algebra
if and only if

(dµ)
2 = 0.

Example A.1.6. Let (A,dA∗,φ) be a quasi-Lie algebroid. Then (A, [·, ·]A) is a differential pre-Lie
algebra and (∧•A,dA∗) is a graded pre-differential algebra.

Proposition A.1.7. Let (E, [·, ·]µ) be a differential pre-Lie algebra over A. There exists a unique
K-bilinear mapping that extending the bracket [·, ·]µ on the graded algebra ∧•(E) satisfying

(i) [X , f ]µ = L µ

X ( f ), for all X ∈ E and f ∈ A;

(ii) it is skewsymmetric in the graded sense, that is,

[Q,P]µ =−(−1)(q−1)(p−1)[P,Q];

(iii) it is a biderivation of the graded algebra ∧•(E), that is,

[Q,P∧W ] = [P,Q]∧W +(−1)(q−1)pP∧ [Q,W ],

for Q ∈ ∧q(E), P ∈ ∧p(E) and W ∈ ∧•(E).

Let N : E → E be an A-linear map. We define the deformed bracket by

[X ,Y ]Nµ = [NX ,Y ]µ +[X ,NY ]µ −N[X ,Y ]µ ,

where X ,Y ∈ E.

Then (E, [·, ·]Nµ ) is a differential pre-Lie algebra with

L µ

NX .

Proposition A.1.8. Let (E, [·, ·]µ) be a differential pre-Lie algebra and let N : E → E be an
A-linear map. Then (E, [·, ·]Nµ ) is a differential pre-Lie algebra. Furthermore, the derivation of
degree 1 of the graded algebra ∧•(E∗) associated with [·, ·]Nµ and denoted by dµ

N satisfies

dµ

N = [iN ,dµ ].
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Let P ∈ ∧2E be a bivector on E, and let P♯ : E∗ → E be the linear mapping defined by

⟨α,P♯(β )⟩= P(β ,α).

We define a bracket in E∗ by

⟨[α,β ]
µ

P ,X⟩=⟨α, [P♯(β ),X ]µ⟩−⟨β , [P♯(α),X ]µ⟩+L µ

P♯(α)
(⟨β ,X⟩)

−L µ

P♯(β )
(⟨α,X⟩)−L µ

X (⟨β ,P♯(α)⟩)

then, (E, [·, ·]µP) is a differential pre-Lie algebra.

Proposition A.1.9. Let (E, [·, ·]µ) be a differential pre-Lie algebra and let P be a bivector on E.
the derivation of degree 1 of the graded algebra ∧•E associated with the bracket [·, ·]µ is

dµ

P = [P, ·]µ .

Proof. Let us check that both derivation dµ

P and [P, ·]µ coincide on elements of A and E. For all
α ∈ E∗ and f ∈ A,

dµ

P f (α) = L µ

P♯(α)
( f ) = ⟨dµ f ,P♯(α)⟩=−⟨α,P♯(dµ f )⟩.

For X ∈ E,

dµ

P X(α,β ) = L µ

P♯(α)
(⟨β ,X⟩)−L µ

P♯(β )
(⟨α,X⟩)−⟨[α,β ]

µ

P ,X⟩

=−⟨α, [P♯(β ),X ]µ⟩+ ⟨β , [P♯(α),X ]µ⟩−L µ

X (⟨α,P♯(β )⟩),

on the other hand,

[P,X ]µ(α,β ) =−L µ

X (P)(α,β ) =−L µ

X (P(α,β ))−⟨α,P♯(L µ

X (β ))⟩+ ⟨β ,P♯(L µ

X (α))⟩

=−⟨α, [P♯(β ),X ]µ⟩+ ⟨β , [P♯(α),X ]µ⟩−L µ

X (⟨α,P♯(β )⟩).

Proposition A.1.10. Let (E, [·, ·]µ) be a differential pre-Lie algebra and let P be a bivector on E.
Then,

[P,P]µ(α1,α2,α3) =−2
(
⟨L µ

P♯(α1)
(α3),P♯(α2)⟩+ ⟨L µ

P♯(α2)
(α1),P♯(α3)⟩+ ⟨L µ

P♯(α3)
(α2),P♯(α1)⟩

)
.

Proof. First, we use the previous proposition to compute [P, ·]µ by

dµ

P P(α1,α2,α3) = ⟨[α1,α2]
µ

P ,P
♯(α3)⟩−⟨[α1,α3]

µ

P ,P
♯(α2)⟩+ ⟨[α2,α3]

µ

P ,P
♯(α1)⟩

+L µ

P♯(α1)
(P(α2,α3))−L µ

P♯(α2)
(P(α1,α3))+L µ

P♯(α3)
(P(α1,α2))

The result follows using the definition [·, ·]µP .
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Example A.1.11. Let (T ∗M, [·, ·]π ,π♯) be the Lie algebroid associated with a Poisson manifold
(M,π). Given Ω ∈ Γ(∧2T ∗M), we have that

dπ
Ω = [Ω, ·]π

and

[Ω,Ω]π(X1,X2,X3) =−2
(
⟨L π

Ω♭(X1)
(X3),Ω

♭(X2)⟩+ ⟨L π

Ω♭(X2)
(X1),Ω

♭(X3)⟩+ ⟨L π

Ω♭(X3)
(X2),Ω

♭(X1)⟩
)
.
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