• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2004.tde-04082004-111954
Document
Author
Full name
German Jesus Lozada Cruz
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2003
Supervisor
Committee
Carvalho, Alexandre Nolasco de (President)
Lopes, Orlando Francisco
Nascimento, Arnaldo Simal do
Oliveira, Luiz Augusto Fernandes de
Ruas Filho, Jose Gaspar
Title in Portuguese
"Comportamento assintótico de problemas parabólicos em domínios tipo Dumbbell"
Keywords in Portuguese
atrator global
equilíbrio estável não-constante
semicontinuidade superior
Abstract in Portuguese
O propósito deste trabalho é estudar a dinâmica assintótica de problemas parabólicos em domínios tipo dumbbell. Para isto primeiro estudaremos a semi-continuidade superior de atratores para problemas parabólicos com condição de fronteira do tipo Neumann homogênea e depois estudaremos a existência de equilíbrios estáveis não-constantes para problemas de reação-difusão com condições de fronteira tipo Neumann não-lineares.
Title in English
Assimptotic Behavior for parabolic problems in Dumbbell domains
Keywords in English
Attractor
stable nonconstant equilibria
upper semicontinuity
Abstract in English
The aim of this work is to study the asymptotic dynamics of parabolic problems in dumbbell type domains. To that end firstly, we study upper semicontinuity of attractors for parabolic problems with homogeneous Neumann boundary conditions and afterwards we study the existence of stable nonconstant equilibria for reaction-diffusion problems with nonlinear Neumann boundary conditions.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
thesis.pdf (1,005.84 Kbytes)
Publishing Date
2004-10-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.