• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.55.2019.tde-05122019-100646
Documento
Autor
Nombre completo
Luiz Carlos Paulu
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1974
Director
Tribunal
Onuchic, Nelson (Presidente)
Molfetta, Natalino Adelmo de
Rodrigues, Hildebrando Munhoz
Título en portugués
COMPORTAMENTO ASSINTÓTICO DE SOLUÇÕES DE SISTEMAS DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Palabras clave en portugués
Não disponível
Resumen en portugués
Não disponível
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
This work has two distincts objectives. However these objectives are basically dependents on the invariance properties of w-limit sets of solutions, bounded in the future, of differential equations. The first objective is essentially an application of the above mentioned result. We look for conditions under which, we can guarantee that every solution (x(t),x(t)), of a nonautonomous second order differential equation. x + h(t,x,x)x + f(x) + g(t,x,X) + p(t,x,x) = O, tends to (η,0), as t → ∞ where (η,0) is an equilibrium point of a certain autonomous equation. We are also interested in studying the stability properties of a class of equilibrium point of the above mentioned second: order differential equation. Our results are closely related to the ones obtained by N,.Onu chic in [11]. However our hypotheses are different from his assumptions. The second main objective of this work is to extend criterions of instability obtained by N.Onuchic [13] to a certain class of nonautonomous differential systems. To this end the main tool used here is provided by results of H.M.Rodrigues [16] on Invariance.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-12-05
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.