• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.55.2019.tde-05122019-100646
Document
Auteur
Nom complet
Luiz Carlos Paulu
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1974
Directeur
Jury
Onuchic, Nelson (Président)
Molfetta, Natalino Adelmo de
Rodrigues, Hildebrando Munhoz
Titre en portugais
COMPORTAMENTO ASSINTÓTICO DE SOLUÇÕES DE SISTEMAS DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
Mots-clés en portugais
Não disponível
Resumé en portugais
Não disponível
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
This work has two distincts objectives. However these objectives are basically dependents on the invariance properties of w-limit sets of solutions, bounded in the future, of differential equations. The first objective is essentially an application of the above mentioned result. We look for conditions under which, we can guarantee that every solution (x(t),x(t)), of a nonautonomous second order differential equation. x + h(t,x,x)x + f(x) + g(t,x,X) + p(t,x,x) = O, tends to (η,0), as t → ∞ where (η,0) is an equilibrium point of a certain autonomous equation. We are also interested in studying the stability properties of a class of equilibrium point of the above mentioned second: order differential equation. Our results are closely related to the ones obtained by N,.Onu chic in [11]. However our hypotheses are different from his assumptions. The second main objective of this work is to extend criterions of instability obtained by N.Onuchic [13] to a certain class of nonautonomous differential systems. To this end the main tool used here is provided by results of H.M.Rodrigues [16] on Invariance.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-12-05
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.