• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.55.2016.tde-07112016-151031
Documento
Autor
Nome completo
Henrique Barbosa da Costa
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2016
Orientador
Banca examinadora
Carvalho, Alexandre Nolasco de (Presidente)
Fu, Ma To
Garrido, Tomás Caraballo
Pereira, Antonio Luiz
Simsen, Jacson
Título em português
Continuidade de atratores para sistemas dinâmicos: decomposição de Morse, equi-atração e domínios ilimitados
Palavras-chave em português
Atratores
Continuidade de atratores.
Decomposição de Morse
Equação de Chafee-Infante
Equiatração
Espaços uniformemente locais
Semi-fluxos skew-product
Semifluxos multívocos
Resumo em português
Neste trabalho estudamos a dinâmica assintótica de problemas parabólicos sob vista de diferentes teorias, particularmente interessados na estabilidade das propriedades dinâmicas dos sistemas. Estudamos a equi-atração no caso não autônomo pelos semifluxos skew-product, que transformam o sistema dinâmico não autônomo em um autônomo num espaço de fase conveniente. Para modelos multívocos, em que o semifluxo é uma função cujos valores são conjuntos, desenvolvemos a decomposição de Morse e mostramos sua equivalência com a existência de um funcional de Lyapunov, que é um resultado muito importante na teoria de semigrupos. Também estudamos a continuidade da dinâmica assintótica de um problema parabólico em um domínio ilimitado quando o aproximamos por domínios limitados específicos.
Título em inglês
Continuity of attractors for dynamical systems: Morse decompositions, equiattraction and unbounded domains
Palavras-chave em inglês
Attractors
Chafee-Infate equation
Continuity of attractors.
Equiattraction
Locally uniform spaces
Morse decomposition
Multivalued semiflows
Skew-product semiflows
Resumo em inglês
In this work we study assimptotic properties of parabolic problems under some different view of points, particularlly interested in the stability properties of the systems. We study equi-attraction in the non autonomous case using skew-product semiflows, which transform the non autonomous dynamical system into a autonomous one in a convenient phase space. For multivalued semiflows, in which the semiflow is a set valued function, we develop the Morse decomposition and show its equivalence with admiting a Lyapunov funcional, wich is a important result on the semigroup theory. We also study the continuity of the asymptotic dynamic for a parabolic problem in an unbouded domain when we approach it by bounded ones.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-11-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.