• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.55.2007.tde-09052007-104439
Documento
Autor
Nombre completo
Marcelo Jose Dias Nascimento
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2007
Director
Tribunal
Carvalho, Alexandre Nolasco de (Presidente)
Alves, Claudianor Oliveira
Cavalcanti, Marcelo Moreira
Fu, Ma To
Pereira, Antonio Luiz
Título en portugués
Problemas parabólicos selineares singularmente não autônomos com expoentes críticos
Palabras clave en portugués
Continuação de soluções
Expoentes críticos
Problemas parabólicos
Soluções epsilon-regular
Resumen en portugués
Neste trabalho estudamos problemas de evolução da forma 'd ' úpsilond' SUP. ' úpsilon' t'' + A (t,'úpsilon' )' úpsilon' = f(t,'úpsilon' ) 'úpsilon'(0) = ' ' úpsilon' IND. 0' ', em um espaço de Banach X onde A(t, 'úpsilon' ) : D 'está contido em' X 'SETA ' X é um operador linear fechado e setorial para cada (t, ' úpsilon' ). Quando o operador A(t, ' úpsilon' ) é independente de ' úpsilon' , isto é, A(t, ' úpsilon') = A(t), mostramos um resultado de exitência, unicidade, continuidade relativamente a dados iniciais e continuação para o caso em que a não linearidade f tem crescimento crítico. Se A(t, 'úpsilon' ) depende do tempo e do estado, então mostramos um resultado de existência, unicidade com f tendo crescimento sub-crítico semelhante aos resultados encontrados em [7, 33]
Título en inglés
Semilinear parabolic problems singularity non autonomous with critical exponents
Palabras clave en inglés
Continuation of solutions
Critical expoents
Epsilon-regular solutions
Parabolic problems
Resumen en inglés
In this work we study initial value problems of the form ' d 'úpsilon' SUP. dt + A (t, 'úpsilon')'úpsilon' = f (t, 'úpsilon' ) ' úpsilon' (0) = ' úpsilon IND.0', in a Banach space X where A(t,' úpsilon' ) : D ' this contained ' X ' ARROW' X is an unbounded closed linear operator which is sectorial for each (t,' úpsilon' ). When the operator family A(t, ' úpsilon' ) is independent of ' úpsilon' , that is, A(t, ' úpsilon' ) = A(t), we show a result on local well posedness and continuation with the nonlinearity f growing critically. If A(t,' úpsilon' ) depends on the time t and on the state ' úpsilon' we show a local well posedness and continuation result that is similar to the result found in [7, 33]
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
marcelo.pdf (809.30 Kbytes)
Fecha de Publicación
2007-05-09
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.