• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2006.tde-09112006-093152
Document
Author
Full name
Karina Schiabel Silva
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2006
Supervisor
Committee
Carvalho, Alexandre Nolasco de (President)
Nascimento, Arnaldo Simal do
Pereira, Antonio Luiz
Ruas Filho, Jose Gaspar
Santos, Jair Silverio dos
Title in Portuguese
Continuidade de atratores para problemas parabólicos semilineares com difusibilidade grande localizada
Keywords in Portuguese
Atratores
Difusibilidade grande localizda
Semicondutores superior e inferior
Abstract in Portuguese
Neste trabalho estudamos comportamento assintótico de problemas parabólicos semilineares do tipo ut ¡div(p(x)Nu)+l u = h(u) em um domí?nio limitado e suave W ½ Rn, com condições de Neumann na fronteira, quando o coeficiente de difusão p se torna grande em uma sub-região W0 que é interior ao domí?nio físico W. Provamos que, sob determinadas hipóteses, a família de atratores se comporta semicontinuamente inferior e superiormente quando a difusão explode em W0
Title in English
Continuity of attrators for semilinear parabolic problems with localized large diffusion
Keywords in English
Attrators
Localized large diffusion
Upper and lower semicontinuity
Abstract in English
In this work we study the asymptotic behavior of semilinear parabolic problems of the form ut ¡div(p(x)Ñu)+l u = h(u) in a bounded smooth domain W ½ Rn and Neumann boundary conditions when the diffusion coefficient p becomes large in a subregion W0 which is interior to the physical domain W. We prove, under suitable assumptions, that the family of attractors behave upper and lowersemicontinuously as the diffusion blows up in W0.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Teserevisada.pdf (787.61 Kbytes)
Publishing Date
2006-11-09
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.