• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2018.tde-10012018-110156
Document
Author
Full name
Claudemir Aniz
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2002
Supervisor
Committee
Goncalves, Daciberg Lima (President)
Biasi, Carlos
Borsari, Lucilia Daruiz
Pergher, Pedro Luiz Queiroz
Rigas, Alcibiades
Title in Portuguese
Raízes de funções de um complexo em uma variedade
Keywords in Portuguese
Não disponível
Abstract in Portuguese
O objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário.
Title in English
Not available
Keywords in English
Not available
Abstract in English
The goal of this work is to progress in the roots theory to maps f : K → M between complexes K and closed manifolds M, both with the same dimension r ≥ 3. Two directions are treated. In the first direction, the concept of minimal classes is defined, and we seek conditions under the spaces K and M so that there exists a map in the homotopy class of f , where all the classes are minimals. In the second direction, we are supposing that Hr(K; Z) = 0, we will like to know if it is possible to exist f : K → M such that MR[f, a ≠ 0, where a ∈ M is an arbitrary point.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
ClaudemirAniz.pdf (3.45 Mbytes)
Publishing Date
2018-01-10
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.