• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2018.tde-10012018-110156
Document
Auteur
Nom complet
Claudemir Aniz
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2002
Directeur
Jury
Goncalves, Daciberg Lima (Président)
Biasi, Carlos
Borsari, Lucilia Daruiz
Pergher, Pedro Luiz Queiroz
Rigas, Alcibiades
Titre en portugais
Raízes de funções de um complexo em uma variedade
Mots-clés en portugais
Não disponível
Resumé en portugais
O objetivo deste trabalho é progredir na teoria de raízes para aplicações f : K → M entre complexos K e variedades fechadas M. ambas de mesma dimensão r ≥ 3. Duas direções são abordadas. Na primeira, o conceito de classes mínimas é definido, e buscamos condições sobre os espaços K e M para que exista uma aplicação na classe de homotopia de f, onde todas as classes são mínimas. Na segunda, supondo que Hr(K; Z) = 0, gostaríamos de saber se é possível existir f : K → M tal que MR[f, a ≠ 0, onde a ∈ M é um ponto arbitrário.
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
The goal of this work is to progress in the roots theory to maps f : K → M between complexes K and closed manifolds M, both with the same dimension r ≥ 3. Two directions are treated. In the first direction, the concept of minimal classes is defined, and we seek conditions under the spaces K and M so that there exists a map in the homotopy class of f , where all the classes are minimals. In the second direction, we are supposing that Hr(K; Z) = 0, we will like to know if it is possible to exist f : K → M such that MR[f, a ≠ 0, where a ∈ M is an arbitrary point.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
ClaudemirAniz.pdf (3.45 Mbytes)
Date de Publication
2018-01-10
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.