• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2009.tde-10052010-085321
Documento
Autor
Nombre completo
Jaqueline Bezerra Godoy
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2009
Director
Tribunal
Godoy, Sandra Maria Semensato de (Presidente)
Barbanti, Luciano
Marconato, Suzinei Aparecida Siqueira
Título en portugués
Método da média para equações diferenciais funcionais retardadas impulsivas via equações diferenciais generalizadas
Palabras clave en portugués
Equações diferenciais funcionais retardadas
Equações diferenciais generalizadas
Equações diferenciais impulsivas
Método da média
Resumen en portugués
Neste trabalho, nós consideramos o seguinte problema de valor inicial para uma equação diferencial funcional retardada com impulsos { 'x PONTO' = 'varepsilon' f (t, 'x IND.t'), t ' DIFERENTE' 't IND. k', 'DELTA' x('t IND. k') = 'varepsilon' ' I IND. k' (x ( 't IND.k')), k = 0, 1, 2, ... 'x IND. t IND.0' = ' phi', onde f está definida em um aberto ' OMEGA' de R x ' G POT. -' ([- r, 0], ' R POT. n') e assume valores em 'R POT. n', ' 'varepsilon' 'G POT. - ([ - r, 0], 'R POT.n'), r .0, onde ' G POT -' ([ - r, 0], ' R POT. n') denota o espaço das funções de [ - r, 0] em ' R POT. n' que estão regradas e contínuas à esquerda. Além disso, ' t IND.0 < ' t IND. 1'< ... 't IND. k' < ... são momentos pré determinados de impulsos tais que 'lim SOBRE k SETA + ' INFINITO' 't IND. k = + ' INFINITO' e 'DELTA'x (' t IND.k') = x ( 't POT. + IND > k) - x ('t IND. k). Os operadores de impulso ' I IND. k', k = 0, 1, ... são funções contínuas de 'R POT. n' em ' R POT. n'. Consideramos, também, que para cada x 'varepsilon' ' G POT. -' ([- r, ' INFINITO'), 'R POT. n'), t 'SETA' f (t, 'x IND. t') é uma função localmente Lebesgue integrável e sua integral indefinida satisfaz uma condição do tipo Carathéodory. Além disso, f é Lipschitziana na segunda variável. Definimos ' f IND. 0' ( 'phi') = ' lim SOBRE T ' SETA' ' INFINITO' '1 SUP. T ' INT. SUP. T INF. ' T IND.0' f (t, ' PSI') dt e ' I IND. 0(x) = ' lim SOBRE T 'SETA' ' INFINITO' ' 1 SUP. T' ' SIGMA' IND. 0 < ou = ' t IND. i' < T onde ' psi' 'varepsilon' ' G POT. -' ([ - r, 0], ' R POT. n', e consideremos a seguinte equação diferencial funcioonal autônoma " média" y PONTO = ' varepsilon' [ ' f IND. 0' (' y IND. t' + ' I IND> 0' (y (t))], 'y IND. t IND. 0 = ' phi'. Então provamos que, sob certas condições, a solução x(t) de (1) se aproxima da solução y(t) de (2) em tempo assintoticamente grande
Título en inglés
Averaging method for retarded functional differential equations with impulses by generalized ordinary differential equations
Palabras clave en inglés
Averaging
Generalized ordinary differential equations
Impulsive differential equations
Retardedf functional differential equations
Resumen en inglés
In this present work, we condider the following initial value problem for a retarded functional differential equation with impulses { 'x POINT' = 'varepsilon' f (t, 'x IND.t'), t ' DIFFERENT' 't IND. k', 'DELTA' x('t IND. k') = 'varepsilon' ' I IND. k' (x ( 't IND.k')), k = 0, 1, 2, ... 'x IND. t IND.0' = ' phi', where f está defined in a open set ' OMEGA' de R x ' G POT. -' ([- r, 0], ' R POT. n'), r >0, and takes values in 'R POT. n', ' 'varepsilon' 'G POT. - ([ - r, 0], 'R POT.n'), r .0, where ' G POT -' ([ - r, 0], ' R POT. n') denotes the space of regulated functions from [ - r, 0] to ' R POT. n' which are left continuous. Furthermore, ' t IND.0 < ' t IND. 1'< ... 't IND. k' < ... are pre-assigned moments of impulse effects such that 'lim ON k ARROW + ' THE INFINITE' 't IND. k = + ' THE INFINITE' e 'DELTA'x (' t IND.k') = x ( 't POT. + IND>k) - x ('t IND. k). The impulse operators ' I IND. k', k = 0, 1, ... are continuous mappings from 'R POT. n' to ' R POT. n'. For each x 'varepsilon' ' G POT. -' ([- r, ' THE INFINITE'), 'R POT. n'), t 'ARROW' f (t, 'x IND. t') is locally Lebesgue integrable and its indefinite integral satisfies a Carathéodory. Moreover, f é Lipschitzian with respect to the second variable. We define ' f IND. 0' ( 'phi') = ' lim ON T ' ARROW' ' THE INFINITE' '1 SUP. T ' INT. SUP. T INF. ' T IND.0' f (t, ' PSI') dt and ' I IND. 0(x) = ' lim ON T 'ARROW' ' THE INFINITE' ' 1 SUP. T' ' SIGMA' IND. 0 < or = ' t IND. i' < T where ' psi' 'varepsilon' ' G POT. -' ([ - r, 0], ' R POT. n', and consider the "averaged" autonomous functional differential equation 'y PONTO = ' varepsilon' [ ' f IND. 0' (' y IND. t' + ' I IND> 0' (y (t))], 'y IND. t IND. 0 = ' phi'. Then we prove that, under certain conditions, the solution x(t) of (1) in aproximates the solution y(t) de (2) in an asymptotically large time interval
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
jaqueline.pdf (8.37 Mbytes)
Fecha de Publicación
2010-05-12
 
ADVERTENCIA: El material descrito abajo se refiere a los trabajos derivados de esta tesis o disertación. El contenido de estos documentos es responsabilidad del autor de la tesis o disertación.
  • FEDERSON, M., and MESQUITA, J.G.. Averaging for retarded functional differential equations [doi:10.1016/j.jmaa.2011.04.034]. Journal of Mathematical Analysis and Applications [online], 2011, vol. 382, n. 1, p. 77-85.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.