• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
Documento
Autor
Nombre completo
Fernando Gomes de Andrade
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2019
Director
Tribunal
Frasson, Miguel Vinicius Santini (Presidente)
Arita, Andréa Cristina Prokopczyk
Federson, Marcia Cristina Anderson Braz
Mesquita, Jaqueline Godoy
Título en portugués
Propriedades das soluções de equações diferenciais em medida
Palabras clave en portugués
Controlabilidade
Dependência contínua de soluções
Equações diferenciais em medida
Equações neutras
Existência de soluções
Unicidade de soluções
Resumen en portugués
Equações diferenciais funcionais em medida podem ser usadas como ferramentas para o estudo de modelos físicos mais próximos da realidade, por exemplo, modelos com fenômeno de "jump" e constituem um ramo relativamente novo de equações diferenciais. Embora esse campo tenha se desenvolvido nos últimos anos, a teoria sobre equações diferenciais funcionais em medida é escassa, com algumas classes de equações ainda não pesquisadas. Neste trabalho, vamos explorar as equações diferenciais funcionais neutras em medida com retardo infinito. Usando técnicas conhecidas na literatura, obtemos propriedades qualitativas para sua solução, como existência, unicidade e dependência contínua com relação as condições iniciais. Além disso, estudamos a controlabilidade de um sistema descrito por este tipo de equação.
Título en inglés
Properties of solutions of measure differential equations
Palabras clave en inglés
Continuous dependence of solutions
Controllability
Existence of solutions
Measure differential equations
Neutral equations
Uniqueness of solutions
Resumen en inglés
Measure differential equations is a branch of differential equations area recently discovered that can be used as a tool to study physical models closer to the reality, for example, models with the phenomenon of jump. Although this field has been developed in the recent years, the theory of measure functional differential equations is still scarce, and some classes of these equations have not been described yet. Here, we will explore the neutral measure functional differential equations with infinite delay. Using techniques known in the literature, we obtain qualitative properties of their solutions, such as existence, uniqueness and continuous dependence. In addition, we study controllability for systems described by this type of equation.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-06-10
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.