• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.55.2013.tde-12042013-104751
Documento
Autor
Nombre completo
Matheus Cheque Bortolan
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2013
Director
Tribunal
Carvalho, Alexandre Nolasco de (Presidente)
Carbinatto, Maria do Carmo
Garrido, Tomás Caraballo
Oliva Filho, Sergio Muniz
Rosado, José Antonio Langa
Título en inglés
Structure of attractors and estimates of their fractal dimension
Palabras clave en inglés
Fractal dimension
Gradient-like
Morse decomposition
Skew product semiflow
Resumen en inglés
This work is dedicated to the study of the structure of attractors of dynamical systems with the objective of estimating their fractal dimension. First we study the case of exponential global attractors of some generalized gradient-like semigroups in a general Banach space, and estimate their fractal dimension in terms of themaximumof the dimension of the local unstablemanifolds of the isolated invariant sets, Lipschitz properties of the semigroup and rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, 'A POT. ') is an attractor-repeller pair for the attractor A of a semigroup {T (t ) : t 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of 'A POT. ', the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. Also, making use of the skew product semiflow and its Morse decomposition, we give some estimates of the fractal dimension of the pullback attractors of non-autonomous dynamical systems
Título en portugués
Estrutura de atratores e estimativas de suas dimensões fractais
Palabras clave en portugués
Decomposição de Morse
Dimensão fractal
Gradient-like
Skew product semiflow
Resumen en portugués
Este trabalho é dedicado ao estudo da estrutura dos atratores de sistemas dinâmicos com o objetivo de obter estimativas de suas dimensões fractais. Primeiramente estudamos o caso de atratores globais exponenciais de alguns semigrupos gradient-like generalizados em um espaço de Banach geral, e estimamos suas dimensões fractais em termos da máxima dimensão das variedades instáveis locais dos conjuntos invariantes isolados, a propriedades de Lipschitz do semigrupo e da taxa de atração exponencial. Também generalizamos este resultado para alguns processos de evoluções especiais, introduzindo um conceito de decomposição de Morse com atração pullback. Sob hipóteses apropriadas, se (A, 'A POT. ') é um par atrator-repulsor para o atratorA de um semigrupo {T (t ) : t 0}, então a dimensão fractal de A pode ser estimada em termos da dimensão fractal da variedade instável de 'A POT. ', a dimensão fractal de A, as propriedades de Lipschitz do semigrupo e a taxa de atração exponencial. Os ingredientes da demonstração são a noção de semigrupos gradient-like e seus atratores regulares, decomposição de Morse e uma análise fina da estrutura dos atratores. Além disto, fazendo uso do skew product semiflow e sua decomposição de Morse, damos estimativas da dimensão fractal dos atratores pullback de sistêmas dinâmicos não-autônomos
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
tese_final_revisada.pdf (750.66 Kbytes)
Fecha de Publicación
2013-04-12
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.