• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2012.tde-13042012-084309
Document
Author
Full name
José Carlos Valencia Alvites
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2012
Supervisor
Committee
Veiga, Paulo Afonso Faria da (President)
Brandão, Daniel Smania
Oliveira, Cesar Rogerio de
Title in Portuguese
Hipótese de Riemann e física
Keywords in Portuguese
Função zeta de Riemann
Função zeta de Riemann e física
Hipótese de Riemann
Teorema dos números primos
Zeros não triviais
Abstract in Portuguese
Neste trabalho, introduzimos a função zeta de Riemann 'ZETA'(s), para s 'PERTENCE' C \ e apresentamos muito do que é conhecido como justificativa para a hipótese de Riemann. A importância de 'ZETA' (s) para a teoria analítica dos números é enfatizada e fornecemos uma prova conhecida do Teorema dos Números Primos. No final, discutimos a importância de 'ZETA'(s) para alguns modelos físicos de interesse e concluimos descrevendo como a hipótese de Riemann pode ser acessada estudando estes sistemas
Title in English
Riemann hypothesis and physics
Keywords in English
Nontrivial zeros
Riemann hypothesis
Riemann zeta function
Riemann zeta function and physics
Theorem of prime numbers
Abstract in English
In this work, we introduce the Riemann zeta function 'ZETA'(s), s 'IT BELONGS' C \ and present much of what is known to support the Riemann hypothesis. The importance of 'ZETA'(s) to the Analytic number theory is emphasized and a proof for the Prime Number Theorem is reviewed. In the end, we report on the importance of 'ZETA'(s) to some relevant physical models and conclude by describing how the Riemann Hypothesis can be accessed by studying these systems
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
alvitesrev.pdf (2.63 Mbytes)
Publishing Date
2012-04-13
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.