• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-14032018-091102
Document
Author
Full name
Claudemir Aniz
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1998
Supervisor
Committee
Manzoli Neto, Oziride (President)
Borsari, Lucilia Daruiz
Goncalves, Daciberg Lima
Title in Portuguese
O Número de Nielsen Relativo
Keywords in Portuguese
Não disponível
Abstract in Portuguese
O objetivo deste trabalho é introduzir o número de Nielsen relativo N(f; X, A), para aplicações f : (X, A) → (X, A) entre pares de espaços, com propriedades semelhantes aos do número de Nielsen, como invariância homotópica e invariância por tipo de homotopia. De N(f; X, A) ≥ N(f) = N (f; X, 0), o número de Nielsen relativo é no caso A ≠ 0 um limitante inferior melhor do que N(f)) para o número mínimo μ(f; X, A) de pontos fixos na classe de homotopia de f, onde as homotopias são aplicações da forma H: (X x I, A x I) → (X, A). Condições para um par (X, A) de poliedros finitos são dadas para assegurar que o número de Nielsen relativo é de fato o melhor limitante inferior, isto e, N(f; X, A) = μ(f; X, A).
Title in English
Not available
Keywords in English
Not available
Abstract in English
The purpose of this work is to introduce the relative Nielsen number N(f; X, A) for maps of pairs of spaces f : (X, A) → (X, A), with similar properties to the usual Nielsen number as homotopy invariance and homotopy type invariance. From N(f;; X, A) ≥ N(f) = N(f;; X, 0), the relative Nielsen number is in the case A ≠ 0 a better lower bound than N(f) for the minimum number μ(f ; X, A) of fixed points in the homotopy class of f, here homotopy means maps of pairs of the form H : (X x I, A x I) → (X, A). In the case (X, A) is a fmite polyhedral pair, conditions are given to guarantee that the relative Nielsen number is in fact the best lower bound, that is, N(f ; X, A) = μ( f ; X, A).
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
ClaudemirAniz.pdf (806.11 Kbytes)
Publishing Date
2018-03-14
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.