• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2010.tde-15042010-161340
Document
Auteur
Nom complet
Michelle Ferreira Zanchetta
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2010
Directeur
Jury
Saia, Marcelo José (Président)
Bedregal, Roberto Callejas
Costa, João Carlos Ferreira
Fernandes, Alexandre César Gurgel
Kuri, José Antonio Seade
Titre en portugais
Números de Lê e classes de Milnor de hipersuperfícies analíticas complexas
Mots-clés en portugais
Arranjos
Classes de Milnor
Fórmula de Plucker
Fórmulas de Lê-lomdine generalizadas
Hipersuperfícies complexas
Números de Lê
Polinômios de Pham-Brieskom
Resumé en portugais
Este trabalho está dividido em duas partes distintas. Na primeira parte caracterizamos os números de Lê de polinômios que são rodutos de polinômios de Pham-Brieskorn de mesmo tipo, que denominamos de arranjos de Pham-Brieskorn, obtendo fórmulas para estes números somente utilizando o número de variáveis, os pesos e o grau de homogeneidade destes polinômios. Na segunda parte nos dedicamos a estabelecer relações entre os números de Lê, que é um conceito local, e as classes de Milnor, que são objetos globais que fornecem informações quanto a geometria e topologia de hipersuperfícies analíticas complexas. No contexto geral, usando a hipótese de especialização, relacionamos a classe de Milnor de dimensão máxima de uma hipersuperfície Z numa variedade compacta M com uma soma, sobre os estratos de uma estratificação de Whitney de Z (com estratos conexos) que estão contidos no conjunto singular, em termos do último número de Lê associado a cada estrato. Além disso, obtivemos uma caracterização da classe de Milnor de dimensão mínima via os números de Lê sem usar a hipótese de especialização. Esta classe coincide com o chamado número de Milnor de Parusinski que, assim como os números de Lê, também é uma generalização do número de Milnor
Titre en anglais
Lê numbers and Milor classes of complex analytic hypersurfaces
Mots-clés en anglais
Arrangements
Complex hypersurfaces
Generalized Lê-lomdine formulae
Lê numbers
Minor classes
Pham-Brieskom polynomial
Plucker formula
Resumé en anglais
This work is divided into two distinct parts. In the first part we characterize the Lê numbers of polynomials that are products of Pham- Brieskorn polynomials of the same type that we call Pham-Brieskorn arrangements, obtaining formulas to these numbers only using the number of variables, weights and degree of homogeneity of these polynomials. In the second part we are dedicated to establishing relationships between Lê numbers, which is a local concept, and the Milnor classes, which are global objects that provide information about the geometry and topology of complex analytic hypersurfaces. In a general context, using the hypothesis of specialization we relate the top dimensional Milnor class of a hypersurface Z in a compact manifold M with a sum given in terms of the last Lê number associated to each stratum of a Whitney estratification of Z (with connected strata) that are contained in singular set. Moreover, we obtain a characterization of the Milnor class of minimum dimension via the Lê numbers without using the hypothesis of specialization. This class coincides with the Milnor number of Parusinski that, as the Lê numbers, it is also a generalization of the Milnor number
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
michelle.pdf (346.37 Kbytes)
Date de Publication
2010-04-15
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.