• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2018.tde-17082018-095102
Document
Author
Full name
Antonio Cesar da Costa Barros
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1993
Supervisor
Committee
Porto Junior, Paulo Ferreira da Silva (President)
Favaro, Luiz Antonio
Mancini, Solange
Title in Portuguese
SOBRE APLICAÇÕES GENÉRICAS ENTRE SUPERFÍCIES
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Neste trabalho apresentamos resultados que relacionam o número de cúspides de uma aplicação genérica f : M → N, onde M e N são superfícies (M compacta), à possibilidade de f se fatorar por uma imersão g: M → N x R e à caracteristica de Euler-Poincaré de determinadas sub-variedades de M. Em seguida, nos ocupamos com um resultado sobre eliminação de cúspides, cuja demonstração nos leva a entender o fato geométrico que impede que determinadas aplicações se fatorem por uma imersão. Finalmente, apresentamos resultados que estendem os anteriores a situações mais gerais.
Title in English
Not available
Keywords in English
Not available
Abstract in English
In this work we present results that relate the number of cusps of a generic map f : M → N, where M and N are surfaces ( M compact), to the possibility of the factorization of f through an immersiom g : M → N x R and to the Euler-Poincaré characteristic of certain submanifolds of M. Further, we are concerned with a result about elimination of cusps, whose proof leads us to understand the geometric obstruction that does not allow the factorization of some maps through an immersion. Finally, we present results that extend the ones mentioned to more general ones.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-08-17
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.