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RESUMO

SANTANA, H. M. C. Obstrucio de Euler e generalizacdes. 2020. 99| p. Tese (Doutorado em
Ciéncias — Matematica) — Instituto de Ciéncias Matemadticas e de Computagdo, Universidade de
Sao Paulo, Sdo Carlos — SP, 2020.

Sejam f,g: (X,0) — (C,0) germes de fungdo analitica definidos sobre um espago analitico
complexo X. O nimero de Brasselet de uma funcdo f descreve numericamente a topologia de sua
fibra de Milnor generalizada. Neste trabalho, apresentamos férmulas que comparam os nimeros
de Brasselet de f em X e de f restrita a X N {g = 0} no caso em que g possui conjunto critico
estratificado de dimensdo um. Se, adicionalmente, f possui singularidade isolada na origem,
calculamos o nimero de Brasselet de g em X e o comparamos com o nimero de Brasselet de
f em X. Como consequéncia, obtemos férmulas para calcular a obstrucdo local de Euler de
X e de X N{g =0} na origem, comparando esses niimeros com invariantes locais associados
a f e a g. Estudamos ainda a topologia local de uma deformacio de g, § = g+ f, para um
nimero natural N > 1. Apresentamos uma relacao entre os nimeros de Brasselet de g e & em
X N{f =0}, no caso em que f possui singularidade isolada na origem. Apresentamos também

uma nova demonstracio para a formula de Lé-Iomdine para o nimero de Brasselet.

Palavras-chave: Obstrucdo de Euler, nimero de Brasselet, pontos criticos de Morse estratifica-

dos, invariantes locais topologicos.






ABSTRACT

SANTANA, H. M. C. Euler obstruction and generalizations. 2020. [99|p. Tese (Doutorado em
Ciéncias — Matematica) — Instituto de Ciéncias Matemadticas e de Computagdo, Universidade de
Sao Paulo, Sdo Carlos — SP, 2020.

Let f,g: (X,0) — (C,0) be germs of analytic functions defined over a complex analytic space
X. The Brasselet number of a function f describes numerically the topology of its generalized
Milnor fibre. In this thesis, we present formulas to compare the Brasselet numbers of f in X
and of the restriction of f to X N {g = 0}, in the case where g has a one-dimensional stratified
critical set and f has an arbitrary critical set. If, additionally, f has isolated singularity at the
origin, we compute the Brasselet number of g in X and compare it with the Brasselet number
of fin X. As a consequence, we obtain formulas to compute the local Euler obstruction of X
and of X N {g = 0} at the origin, comparing these numbers with local invariants associated to f
and g. We also study the local topology of a deformation of g, § = g+ f, for a positive integer
number N > 1. We provide a relation between the Brasselet number of g and g in X N {f = 0},
in the case where f has isolated singularity at the origin. We also provide a new proof for the

Lé-Iomdine formula for the Brasselet number.

Keywords: Euler obstruction, Brasselet number, Stratified Morse critical points, local topologi-

cal invariants.
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INTRODUCTION

Let f: (C",0) — (C,0) be an analytic function defined in a neighborhood of the origin
and Xf the critical locus of f. Milnor studied the set f~!(8) N Be, denoted by Fy o and later
called Milnor fiber, where § is a regular value of f,0 < || < € < 1. In (MILNOR, [1968),
Milnor proved that, if f has an isolated singularity, Fr o has the homotopy type of a wedge of
1 (f) spheres of dimension n — 1, where pt(f) is the Milnor number of f. This number also gives
an important geometric information associated to the function f, which is the number of Morse

points in a Morsification of f in a neighborhood of the origin.

In (HAMM, 1971), Hamm generalized Milnor’s results for complete intersections with
isolated singularity F = (fi,..., fr) : (C",0) — (CK,0),1 < k < n, proving that the generalized
Milnor fiber F~1(8) N Be,0 < |8| < & < 1, has the homotopy type of a wedge of t(F) spheres
of dimension n — k. In this context, L& (LE, 1973) and Greuel (GREUEL, 1975) proved that
W(F)+ pu(F') = dim(c(ﬁ%"ﬁ(’), where F’ : (C",0) — (Ck=1,0) is the map with components
f1,--+, fx—1 and I is the ideal generated by f1,..., fr_1 and the (k X k)-minors M Notice

1 7"'7xik

) is the number of critical points of a Morsification of f; appearing

. O
that the number dimg (—7°

on the Milnor fibre of F’.

If f is defined over a complex analytic space X, the singular part of X should be
considered in the study of the sets X N f~1(8) N B, and £f, where 0 < |§| < € < 1. A way to
obtain a numerical information about the singular locus of X is using the local Euler obstruction,
a singular invariant introduced by MacPherson, in (MACPHERSON| 1974), where he proved the
Deligne-Grothendieck conjecture about characteristic classes of singular varieties. If the function
f has an isolated singularity at the origin, a generalization for the Milnor number is the Euler
obstruction of the function f, which is also a generalization of the local Euler obstruction and
was introduced in (BRASSELET er al.| 2004), by Brasselet, Massey, Parameswaran and Seade.
In (SEADE; TIBAR; VERJOVSKY, 2005), Seade, Tibir and Verjovsky proved that, up to sign,
this number is the number of Morse critical points of a stratified Morsification of f appearing in

the regular part of X in a neighborhood of the origin.

In a more general context, if f is defined over a complex analytic germ (X,0) equipped
with a good stratification ¥ for f (see Definition[1.8.1]) and the function f does not have isolated
singularity at the origin, a way to describe the generalized Milnor fiber X N f~1(8) N B is to
use another generalization of the local Euler obstruction, the Brasselet number of f at the origin,
By x (0), introduced by Dutertre and Grulha in (DUTERTRE; GRULHA| 2014). In that paper,
the authors presented a L&-Greuel type formula for the Brasselet number: if g : X — C is prepolar
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with respect to ¥ at the origin (see Definition[1.8.10) and 0 < |8| < € < 1, then
By x(0) =By x:(0) = (—1)"""ng,

where n, is the number of Morse critical points of a partial Morsification of g|yn F-1(8)NBe
appearing in the regular part of X, and X8 = X N {g = 0}.

They also proved several results about the topology of functions with isolated singularity
defined over an analytic complex Whitney stratified variety X. If X is equidimensional, let f, g :
X — C be analytic functions with isolated singularity at the origin, such that g is prepolar with
respect to the good stratification induced by f at the origin (see Example[1.8.2) and f is prepolar
with respect to the good stratification induced by g at the origin, then By xs(0) = B, x/(0),
where X/ = X N {f = 0}. Also, if ng 18 the number of Morse critical points of a Morsification of
glyn F-1(8)NBe appearing in the regular part of X and m, is the number of Morse critical points of

a Morsification of f{y,-1(5)np, appearing in the regular part of X, for 0 < |§| < € < 1, then
By x(0) =By x(0) = (=1)* ! (ng — my).

An interesting consequence of this last statement is a way to compare the local Euler
obstruction Euys(0) and the Brasselet number Bs xnx(0), given by the equality Euy,(0) =
By xnu(0), where H is a generic hyperplane passing through the origin.

In this work, we start considering, in Chapter 2, two function-germs f,g : X — C and
a good stratification 7 of X relative to f. We suppose that the critical locus X4 g of g is one-
dimensional, that £, g N {f = 0} = {0} and we denote by #/ the collection of strata of ¥
contained in {f = 0} and by Vi,...,V, the strata of 7" not contained in { f = 0}. Then, we prove
(Lemma [2.1.1)) that the refinement

7' ={VA\S g inZygie {1, .. Uy’ (M

is a good stratification of X relative to f and ¥ He=0} js a good stratification of

X N{g =0} relative to f|x~(e—0}, where

71620 = {Vin{g =01\ Sy, VinZyg i€ {1,....at fu (#/ n{g =0})

and 7/ N {g =0} denotes the collection of strata of type V/ N {g =0}, with V/ € 7/,

We write Xyg as a union of irreducible components (branches)
yg=>b1U...Ub;, where bj C Vi, for some i; € {1,...,q} and we take a regular value &
of f,0 < |8| < 1, and, for each j € {1,...,r}, weset f~1(8)Nb; = {xiys- - Xy, }- So, in this
case, the local degree my,, of f | b; 18 k. Let € be sufficiently small such that the local Euler
obstruction of X and X are constant on b; N B. In this case, we denote by Eux (b;) (respectively,

Euxs(b;)) the local Euler obstruction of X (respectively, X¢) at a point of b; N Be. If g is tractable
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at the origin with respect to ¥ relative to f (see Definition|1.8.12) and 0 < |§| < € < 1, we
prove (Theorem [2.1.2) that

Byx(0) = Byxs(0) —myp, Xy (Eux (b)) — Euxs(bj)) = (=1)*"'m,

where m is the number of stratified Morse critical points of a partial Morsification of
g:XNf1(8)NBe — C appearing on X, N f~1(8) N{g # 0} N Be.

We conclude that, in the case where g is not prepolar with respect to ¥ relative to f, the
Lé-Greuel type formula for the Brasselet number presents a type of defect. More precisely, this
formula shows us that the number of Morse critical points m on the regular part of X does not

contain all the topological information given by the difference By x (0) — By x¢(0).

Then, after that, we suppose that f has an isolated singularity at the origin and we
consider a Whitney stratification % of X. Let 7" be the good stratification of X induced by f and

let us suppose that g is tractable at the origin with respect to ¥ relative to f. We prove (Lemma
2.2.2) that the refinement ¥ of ¥,

7" = {Vi\{g=0},Vin{g =0}\Zyg.VinZyg Vi€ ¥ U {0} @

is a good stratification of X relative to g such that #"1/=0 = (V' n{f=0},V/ € ¥"} is a
good stratification of X/ relative to g| X7-

Using this stratification, we prove (Corollary [2.2.TT)) that,

B, x1(0) =By xs(0) — Xy myp;(Euxs (b)) — By xni =5y (b)),

where By x(—s1(b;) is the Brasselet number of g at a point x;, € b;N{f = 6}.

As a consequence of this result, we obtain a way to compare the local Euler obstruction
Euyx¢(0) and the Brasselet number B, x~y(0) in the case where g has a one-dimensional critical
locus. Let  be a generic linear form over C* and H = [~'(0). We prove (Corollary [2.2.13)) that:

B xnu(0) = Euxs(0) — Yoy mp (Euxs (b)) — By xry-115) (b))

where my,; is the multiplicity of the branch b; at the origin. In this same setting, we also prove

(Corollary [2.2.22)) that
By x(0) =By x(0) = (=) (ng —mg) = Xy mpp, (Eux (bj) — By x5} (b)))-

For analytic functions defined over a nonsingular subspace of (C",0) and with a s-
dimensional singular locus, s > 1, Massey generalized the Milnor number with the L& numbers
(Definition , in (MASSEY, 1990). In this context, Massey provided (Theorem 4.3 of
(MASSEY/| |1988))) a (handle) decomposition of the Milnor fibre of f, where the number of
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n-cells attached at each (dimensional) level is an appropriate Lé number. If we take a generic
linear form / over C", lomdin (I(OMDIN| 1974a), with an algebraic approach, and Lé& (LE, 1980),
with a geometric approach, proved that, for s = 1, it is possible to compare the Milnor fibres
of the analytic function f with a one-dimensional critical set and of the function f + [V, for
N > 1 sufficiently large. In (MASSEY), 2003), Massey compared L& numbers associated to the
analytic functions f and f +al", for N sufficiently large, a € C and s > 1, and obtained several
Lé-Tomdin formulas for the L& numbers. In Chapter 3, we suppose that g has a one-dimensional
critical set and that f has an isolated singularity at the origin and we consider the analytic
function-germ § = g+ fV,N > 1. We compare the Brasselet numbers B #x¢(0) and B xz(0)
and we obtain (Theorem [3.2.9)

By x:(0) — By xs(0) = X ymyp (Euxs (b)) — By xrp-1(5)(b)))-

After, we compare the Brasselet numbers B, x (0) and Bz x(0), and we obtain (Theorem
3.3.4) a Lé-Iomdin formula for the Brasselet number. If 0 < |¢¢| < 1, then

.
By x(0) = Bex(0)+N Y mpp Ees xrg1(a) (b)),
=

that generalizes the Lé-lomdin formula for the Euler characteristic of the Milnor fibre to the case

of a function with isolated singularity.

In Chapter 1 we present definitions and results about objects we will need to develop
this work, like the local Euler obstruction and the Brasselet number. In Chapter 2 we present
results about functions with arbitrary singularities and about functions with isolated singularity
at the origin. Chapter 3 is devoted to results about the local topology of the deformation of g,
& =g+ fV, where N > 1 is a positive integer number.
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CHAPTER

PRELIMINARIES

This chapter presents general definitions and properties that we will need in the develop-
ment of this work.

1.1 Complex analytic spaces

In this section we present definitions and some results about complex analytic spaces
in two different ways. We begin with an algebraic approach, using sheaf theory, which will be
useful to understand the constructions in the forward sections, and then we present the classical

geometric approach for these spaces.
The main reference for the first part of this section is (GREUEL; LOSSEN; SHUSTIN|,
2007)).

Definition 1.1.1. Let X be a topological space. A sheaf .7 of rings over X, consists of the
following:

1. For each open subset U of X, there exists a ring .% (U ), whose elements are called sections

of # over U.
2. For each pair of open subsets V C U of X, there exists a map, called restriction map,
ry: F(U) — F(V), which could be denoted by r,(s) = 5|, » satisfying:
i) rfy = id 7 y), for each open subset U of X;
11) r‘V,V o rl‘§ = rlv}/, for each open subsets W CV C U of X.
3. For each open subset U of X and each covering U;c;U; of U by open subsets of X, we
have:

i) for all 51,50 € #(U), if 1), =521, Vi €1, then s1 = s2;
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ii) for each i € I, consider s; € 7 (U;). If s;
s € Z(U) such that s, =s; foralli €I

orw; = iy, for all i, j € I, there exists

If .7 satisfies conditions 1 and 2, .7 is called presheaf of rings over X.

Example 1.1.2. Considering the standard topology on C”, the sheaf of holomorphic functions
Ocn over C" is defined as the following: for each open subset U C C”", define Ocn(U) :=
{f:U — C| fis holomorphic}. For open subsets V C U, consider the usual restrictions r‘lf :
Ocn(U) — Ocn(V), with Y (s) = S|y -

Let .7 be a sheaf over a topological space X and a € X. Consider pairs (U, s), where U is
an open subset of X containing a and s € .% (U ). Over the set of pairs (U,s), define the relation
~ as in the following: (U,s) ~ (V,t) if there exists an open neighborhood W of a such that
a €W CUNV and s|w = t|w or, equivalently, r}y (s) = r{/ (¢). This is an equivalence relation

and its equivalence classes are denoted by (U, s],, for each a € X.

Definition 1.1.3. The equivalence class [U,s], is called the germ of .% at the point a. The set
F4 of all germs of .7 is called the stalk of .7 at a.

Example 1.1.4. The stalk Ocn . of the sheaf Oc¢x in a point x € C" is the set of germs of

holomorphic functions of C" at x.

Remark 1.1.5. (For the detailed description see 2.1 of (MANIN, 2018))) Given a presheaf .7
defined over a topological space X, it is possible to construct a sheaf .# ™ over X called the sheaf
associated to .7, such that %, = .7 forall x € X.

If o7 is a sheaf of rings on X, a sheaf .% on X is called a sheaf of .<7-modules if .7 (U)
is an &/ (U)-module and the restriction maps rJ are morphisms of .7 (V' )-modules. Let .7,.%,
be sheaves of .o7-modules on X ..7] is a subsheaf of .7%; if for each open subset U C X,.%(U) is
an 7 (U)-submodule of .%,(U) and the restriction maps of .% are induced by the ones of .%;.
Sheaves of .o/ -submodules of .7 are called sheaves of ideals in .. The sheaf .7 of .&/-modules
is free if it is isomorphic to the direct sum @;c;.97%, where .7 is a sheaf of .o7-module, for all
i € I, and @;c;<7% denotes the sheaf associated to the presheaf that maps each open subset U of
X to the .o (U)-module ®;c;.o7(U). If I is a finite set, the number of elements in / is the rank of
7 . More generally, a sheaf of 7-modules .7 is locally free of rank « if for each x € X there
exists a neighborhood U such that .7 (U) is a free <7 (U )-module of rank .

Our goal now is to define the preimage and the direct image sheaves. For that we will
need the notion of direct limit. Let the objects of a category be sets with an algebraic structure
(such as groups, rings, modules over a ring) and the morphisms the morphisms of these structures.
Let {A;,i € I} be a family of objects enumerated by elements of an ordered set of index I and for

all i < j, consider a family of homomorphisms f;; : A; — A; with the following properties:
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L. fi=id|a;

2. fik = fjko fij, forall i < j <k.

The family of pairs (A;, fi;) is called a directed system over /. The direct limit 1i_r>nA,~ of the
directed system (A;, f;;) is defined as the quotient of the disjoint union of the sets A; modulo an
equivalence relation ~:

1i_H>1Ai =L Ai/ ~,
where if x; € A; and x; € Aj,x; ~ x; if, and only if, fix(x;) = fjx(x;), for some k € I.

If f: X — Y is a continuous map of topological spaces and .o/ is a sheaf of rings on X,
the direct image f..<7 of &7 by f is the sheaf of rings associated to the presheaf that maps each
open subset V of Y to the element o7 (f~!(V)). If . is a sheaf of .o7-modules, the direct image
feZ of Z by f is the sheaf of f,.o7-modules associated to the presheaf that maps each open
subset V of Y to the .7 (f~!(V))-module .7 (f~1(V)).

Moreover, if ¢ is a sheaf of rings on Y, the topological preimage sheaf f~'¢/ is the sheaf

of rings associated to the presheaf that maps each open subset U of X to the ring ligl Gq(V),
f)cv
the limit being taken over all open sets V C Y containing f(U) (the order is the inclusion). If

i: X <Y is the inclusion map of a subspace X of Y, then ¢|x := i~ (%) is called topological
restriction of ¢ to X.

If o7y and o are sheaves of rings on X and on Y respectively, it is also possible to
define the analytic preimage sheaf of a sheaf of .o/ -modules ¢ as the sheaf of .2Zx-modules

associated to the presheaf that associates to each open subset U of X, the @7y (U )-module
W) = GU) @1 (1) Fx (U).

A pair (X,.2f) given by a topological space X and a sheaf of rings @7 is called a
ringed space. A morphism of ringed spaces is a pair of maps (f, f%) : (X,a%) — (Y, %),
where f : X — Y is a continuous map of topological spaces and, for each open subset U C Y,
fiy oy (U) — foa#x(U) is a homomorphism of rings, where f,.2% denotes the direct image
of o7 by f. If f is a homeomorphism and f ﬁ|U is an isomorphism of rings, for each open subset

U of X, (f, f*) is an isomorphism of ringed spaces.

Definition 1.1.6. Let D C C” be an open subset and & the sheaf of holomorphic functions
over D. An ideal sheaf . C O is called of finite type if, for every point p € D, there exist
an open neighborhood U of p in D and holomorphic functions fi,..., fi € ¢(U) such that

FU) = (fi---: f)-

For an ideal sheaf of finite type .#, we can define the sheaf % of quotient rings on D

as the sheaf associated to the presheaf that maps each open subset U C D to the quotient ring
Op(U)
7(0)
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Definition 1.1.7. Let .# be an ideal sheaf of finite type. The analytic set in D defined by .# is

given by
V(S) = {pED; (%) #0}.
p

Notice that <%>p # 0 if, and only if, f(p) =0 for all f € .#,. Therefore, for an

open neighborhood U of p, since .7 is of finite type, there exist fi,..., fi € O(U) such that
S = (f1--., fr) and then
V(Z)NU =V (fi,..., fk)-

Let us see the definition that gives the local structure of a complex analytic space.

Definition 1.1.8. Let D be an open subset of C" and .# be an ideal of finite type in the sheaf
of holomorphic functions &p. A complex model space defined by .# is the pair (X, Ox) given
by a topological space X = V(.#) C D and the sheaf of rings Ox = (%) |x, given by the

topological restriction of % to X.

Definition 1.1.9. A complex analytic space is a pair (X, Ox) given by a Hausdorff topological
space X and a sheaf of rings Oy such that, for every p € X, there exists a neighborhood U of p,

such that (U, Ox|y) is isomorphic to a complex model space (as ringed spaces).

Definition 1.1.10. A closed complex analytic subspace of a complex space (X, Oy) is a ringed
space (Y, Oy) given by an ideal sheaf of finite type .%y C O such thatY =V (%) and Oy =
(%) |y is the topological restriction of % toY.

Example 1.1.11. Let f|(x,y,z) =x* —y and f>(x,y,z) = x° — 2> be holomorphic function germs
in O¢s o and consider the sheaf of ideals of finite type .# over Os that associates to each open
set U of C3 the ideal # (U) = (f1, /)O3 (U). Let

x={recs(f5) #0}=eCinitI=nr=0)

Hence,
X={(x,y,2)eCx=y=1*7=1,1€C}.
Over X define the sheaf O of rings associated to the presheaf that associates to each open set

ﬁc3 (XnU)

U NX the quotient ring XU

. Therefore, (X, Ox) is a complex analytic space.

We will often work on a neighborhood of a point x of a complex analytic space (X, Ox),

so we will need the following notion.

Definition 1.1.12. A complex analytic space germ is a pair (X,x) given by a complex space
(X, Ox) and a point x € X. A morphism of complex space germs f : (X,x) — (¥,y) is a morphism
of ringed spaces f : (X, Ox) — (Y, Oy) such that f(x) =y, which will be called holomorphic

map germ.
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We are interested in a complex space (X, Oy ) such that, for each x € X, the stalk Oy , of
Ox at x is reduced, that is, it has no nilpotent elements. In this case, (X, Ox) is called reduced
and a holomorphic function germ f : (X,x) — (C,y) is given by a restriction of a holomorphic
function F : U C C"* — C, where U is a neighborhood of x in C" (see page 38 of (GREUEL;
LOSSEN; SHUSTIN, 2007)).

From now on we will always consider reduced complex analytic spaces.

If U C X is an open neighborhood of x € X, the germ (U, x) is identified with the
germ (X,x) and U is called a representative of (X,x). Similarly, if f: (X,x) — (Y,y) is a
holomorphic map germ, U C X and V C Y are representatives of X and Y, respectively, and
fU)CV, f:U—V is called a representative of the map germ f.

Definition 1.1.13. Let X be a complex analytic space, A be a closed complex analytic subspace
of X given by the ideal sheaf of finite type .#4 and x € X. Then (A, x) is called irreducible if the
stalk .#4 C Ox . of ., at x is a prime ideal. Otherwise, (A, x) is called reducible.

Proposition 1.1.14. (Proposition 1.51 (GREUEL; LOSSEN; SHUSTIN, 2007)) Let X be a
complex analytic space, A C X a closed complex analytic subspace and x € X. There exists a

decomposition

(A,x) = (A, x)U...U(A,,x),

where (A,x),...,(A;,x) C (X,x) are irreducible germs of analytic sets such that (A;,x) Z (Aj,x)
for i # j. This decomposition is unique up to permutation of (A;,x).

Definition 1.1.15. Let X be a complex analytic space and p € X. Then the dimension dim, X
of X at p is define by the Krull dimension of the local ring O ,. Also, the dimension dimX of
X is defined as

dimX := sup{dim,X;p € X }.

We present now a geometric approach for complex analytic spaces. The main reference
for the last part of this section is (LOJASIEWICZ, [1991)).

Let M be a complex manifold (see page 133 of (LOJASIEWICZ, 1991)).

Definition 1.1.16. A globally analytic subset of the manifold M is a set of the form

V(fi,.- i) ={zeM; fi(z) = --- = fi(z) = 0},

where f1,..., fx are holomorphic functions on M.

Definition 1.1.17. Let a be a point of M. An analytic germ at a is the germ at a of a globally

analytic subset of an open neighborhood of a.
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Definition 1.1.18. A subset Z of complex manifold M is called an analytic subset of M if every
point of the manifold M has an open neighborhood U such that the set ZNU 1is a globally analytic

subset of U. In particular, any closed submanifold of the manifold M is an analytic subset.

Analytic subsets of open subsets of the manifold M are called locally analytic subsets
of M.

Definition 1.1.19. A (complex) analytic space is a topological Hausdorff space X with an
analytic atlas, i.e., with a family of homeomorphisms ¢; : G; — V;, where {G;} is an open cover

of X and V; are locally analytic subsets of C" such that the mappings
P00 9i(GiNGr) = 9(GiNGy)
are holomorphic.

An analytic space X is an n-dimensional manifold if its structure is induced by the

structure of an n-dimensional manifold.

Remark 1.1.20. Definitions|I.1.9/and|1.1.19|are equivalent. See page 39 of (GREUEL; LOSSEN;
SHUSTIN] 2007).

1.2 On the properties about complex algebraic sets

In this section, we will see some properties proved by Iomdin, in (IOMDIN| [1974b),
about the structure of complex algebraic sets in a neighborhood of nonisolated singular points.

We note that the statements of this section are also valid over complex analytic sets.

The following abbreviated notation will be used: a certain linear relation holds between
the vectors wy,...,wg mod vy,..., v if this relations holds for vectors wy, ..., wy in the quotient

space formed from C™ by the subspace spanned by the vectors vy, ..., vs, where w;,v; € C™.

Let0eV CY CY* C C"be complex algebraic sets, g, ...,gs generators of the ideal
I[(Y*) and g1,...,8s, f1,-- -, fr generators of I(Y). Assume that Y*\ Y is regular.

Put ¢ =Y ||£/||* and let & = ¥ ||/||> be a function such that h|y has a zero at the

coordinate origin and /; are polynomials in C”.

Corollary 1.2.1. (Corollary 1.7 of (IOMDIN;, 1974b))) There is an € > 0 and a neighborhood G
of the set V' \ {0} in Y* such that at points z of D NG\ Y, the vectors grad h(z) and grad ¢(z)
are complex linearly independent mod grad g(z),...,grad gs(z), where D is the closed ball
with center at the coordinate origin and radius €.
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In the particular case where V is the set of singular points of ¥ in a neighborhood of
the origin and V' is one-dimensional, lomdin proved, in (IOMDIN], 1974a), several interesting

properties of algebraic complex sets intersected by a generic hyperplane.

Suppose that [ is a linear form in C™ such that /|y has an isolated zero at the origin.
Since V is one-dimensional, for a sufficiently small w # 0, the set /! (w) NV consists of n points

Zw),i=1,...,n.

Lemma 1.2.2. (Lemma 2.1 of (IOMDIN, 1974a)) If w # 0 is sufficiently small, the variety

Y NI~!(w) has an isolated singularity at each point z'(w),i =1,...,n.

For each sufficiently small w # 0, there are defined n smooth manifolds 2§(W) given by

the intersection of ¥ N7~!(w) with spheres of sufficiently small radii centered at z'(w).

Lemma 1.2.3. (Lemma 2.2 of (IOMDIN, |1974a)) The manifolds ¥ (w;) and £ (w,) are diffeo-
morphic if the points z'(w;) and z'(w,) belong to the same branch of V at zero.

1.3 Analytic cycles and intersections multiplicity

In (MASSEY! 2003), Massey described the topology of complex analytic singularities
using varieties associated to these singularities. We will use one of his approaches about intersec-
tion multiplicity of analytic cycles to understand the topology of the intersection of a polar curve
with a variety. In this section, we will present the definition and properties we will need.

Let (X, Ox) be a complex analytic space and {V} the collection of irreducible compo-
nents of X. Let p be a point of V. Choose one of the irreducible germ components (Vlﬁ) jof Viat
p and let /,, be the prime ideal of Oy ), associated to (Vli) j- Denote by my,: the length of the ring

(O p)1,- Notice that my: does not depend on the point p or on the component (V},); chosen.

Definition 1.3.1. The analytic cycle of X is given by the formal sum
X] = va [V].
v
Remark 1.3.2. Notice that, if f,g € Ox, then [V (fg)]=[V(f)]+[V(g)]and [V (f™)] =m[V(f)].

Let us now give some definitions and properties about intersection of cycles.

Definition 1.3.3. Let V and W be irreducible analytic subspaces of a connected complex manifold
M and Z be an irreducible component of V \W. If codimyZ = codimy,V + codimyW, then we
say that V intersects W properly along Z. If V and W intersect properly along each component
of VN W, then V and W are said to intersect properly in M and the intersection product
[V][W] is defined by [V][W] = [VNW].
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Two cycles Y m;[V;] and Y m;[W,] are said to intersect properly if V; and W; intersect

properly for all i and j. If this is the case, the intersection product is given by

Y milVi) ) nj[W il =Y min;([VI]W;]) = ) min;([Vi OW)).

Definition 1.3.4. Let C; and C, be two cycles that intersect properly and let {Z;,k=1,...,n}
the irreducible components of the intersection product of C; and Cy, that is, C1.Co =Y.' ni[Zy].
The coefficient ny is called intersection number of C| and C; at Z;, that is, n; is the number of

times Z; occurs in the intersection.

Let us see a practical way, presented by Massey in A.9 of (MASSEY], 2003), to compute

the intersection number defined above.

Remark 1.3.5. Let M be a complex manifold, & be a coherent sheaf of ideals (see page 128,
(MANIN. 2018)) in &) and let us denote by V () the analytic subspace defined by the vanishing
of a. Given a point p in M, suppose that W = V(a) is a curve in M, which is reduced and
irreducible at p, and consider a hypersurface V(f) C M, f € Oy, which intersects W properly
at p, where V(f) is the analytic subspace defined by the vanishing of f. Let ¢@(¢) be a local
parametrization of W such that ¢(0) = p. The intersection number of [W] and [V (f)] at p is
given by mult, f(¢(t)), the degree of the lowest nonzero term of f(¢(z)).

1.4 Module of Kahler differentials

We aim to introduce the relative Nash modification. For that we will need to define the
module of Kihler differentials (see (GREUEL; LOSSEN; SHUSTIN, 2007) for details).

Definition 1.4.1. Let B be a ring, A be a B-algebra and M an A-module. A B-derivation with

values in M is a B-linear map 6 : A — M satisfying the Leibniz rule,
6(f8) =08(f)g+/6(3).f,g €A.

The set Derg(A,M):= {6 :A — M, d is a B-derivation} C Homp(A,M) isvia (a.8)(f):=
a.0(f) an A-module called module of B-derivations of A with values in M. Notice that, for
B =C, each 6 € Derc(C{xy,...,x,},M) has a unique expression

§=Yr8(x) 2

Theorem 1.4.2. (1.1.106 of (GREUEL; LOSSEN; SHUSTIN, 2007)) Let A be an analytic
C-algebra.

1. There exists a pair (Q}\ ,dy), called module of Kéhler differentials, consisting of a finitely
generated A-module 9}4 and a derivationdy : A — Q}‘ such that for each finitely generated
A-module M, the A-linear morphism
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Oy : Homa (Q, M) — Derc(A,M), ¢ — @ odh,

is an isomorphism of A-modules.
2. The pair (QA,dA) is uniquely determined up to unique isomorphism.

3. f A = C{xy,...,x,} := C{x} then QC{ y is free of rank n with basis dxi,...,dx, and
d=dcgyy : C{x} — QC{X} is givenby df =Y | ax 9 dx;.

Now let us extend the module of Kihler differentials initially defined over a C-algebra to
the case where it is defined over a complex space. Let X be a complex space, x € X and U be
an open neighborhood of x which is isomorphic to a local model space Y defined by an ideal of
finite type .# C Op, where D is an open subset of C". The sheaf Q}, is defined to be the free
sheaf Opdx; @ - -+ ® Opdx, and the derivationd : Op — QD isdefinedby df =Y ; ax dx,

Definition 1.4.3. Let Oy be the sheaf of quotients of rings ¢p/.# and assume that . =
(fi,---, fx)o,- Let Opd.# be the subsheaf of Q}, generated by df,...,df; and .ZQl, the
subsheaf of QID generated by fidx;,i=1,...,n,j=1,...,k. The module of Kéahler differentials

1
on Y is defined by the topological restriction of the sheaf 7or 2 to Y, denoted by Q}, with

+0pd I
the induced derivation denoted by dy : Oy — Q,l,.

If ¢ : U — Y is an isomorphism to the local space Y, one defines Q}] = (p*Qll,, where
(p*Qll, is the analytic preimage sheaf of Q}, by ¢. In this case, by Theorem (2), Q}] is,
up to a unique isomorphism, independent of the choice of ¢. Hence, by gluing the locally
defined sheaves Qll/, it is possible to obtain a unique sheaf Q) on X, the sheaf of holomorphic
Kihler differentials on X with a unique derivation dx : Ox — Q}(. Using this sheaf, it is
possible to obtain a regularity criterion for the complex space (X,x) (see Theorem 1.110 in
(GREUEL; LOSSEN; SHUSTIN, 2007)). Aiming to extend this criterion to morphisms of
complex spaces, the concept of relative differential module need to be introduced. We do not
provide the complete description of this object (see (GREUEL; LOSSEN; SHUSTIN| 2007)),

but only a characterization of it which is enough to understand the relative Nash modification.

Definition 1.4.4. Let X and S be complex spaces, where X is defined by the sheaf of ideals
of finite type .# C Op, D is an open subset of C" and S C C¥. Consider a morphism of com-
plex spaces i : X — S, induced by the map i = (hy,...,h) : D — CK. The sheaf of relative
holomorphic Kihler differential forms of X over § is defined by

Q]
Q] 1 D I
X/S (I Qp+0pd I +(hy,..hi) o) |x

where (SQ}+ Opd.F + (h1,...,l)g,)|x denotes the topological restriction of the sheaf
(f.Q.;)—F Opd. 9 + <h1,...,hk>ﬁl)> to X.
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1.5 Stratification of a complex analytic space

A way to study a complex space is considering a decomposition of this (possibly singular)
space into a union of smooth components. In this section we will see different types of a special

type of decomposition, called stratification.

Let X be a complex analytic space defined over an open subset U of CV.

Definition 1.5.1. A complex analytic stratification of X is a locally finite decomposition of X
into complex analytic submanifolds (the strata) such that the closure of each stratum is complex

analytic and a union of strata.

In the following, all stratifications considered are complex analytic.

A refinement of a stratification ¥ of X is a stratification & of X such that each stratum

of ¥ is a union of strata of Z.

A useful type of complex stratification is the following.

Definition 1.5.2. A Whitney stratification of X is a stratification that satisfies the following
conditions: for all pair of strata (Va,Vﬁ),Vﬁ C Vi, suppose (x;) € Vy is a sequence of points
converging to some y € V. Suppose (y;) € Vg also converges to y, that (with respect to some
local coordinate system of CV) the secant lines /; = X;y; converge to some limit line / and that

the sequence of tangent planes 7,V converges to a plane 7. Then

1. Whitney’s condition (a): LVgCr and

2. Whitney’s condition (b): [ C 7.

Let us see some properties about Whitney stratifications.

Remark 1.5.3. 1. Whitney’s condition () implies the Whitney’s condition (a) (see (MATHER|,
2012)).

2. The transversal intersection of two Whitney stratified spaces is a Whitney stratified space,
whose strata are the intersections of the strata of the two spaces (see (ORRO; TROTMAN,
2010)).

3. Suppose A is a subanalytic (resp. complex analytic, complex algebraic) subset of a real
analytic (resp. complex analytic, resp. complex algebraic) smooth manifold M. Then there
exists a Whitney stratification of A into subanalytic (resp. complex analytic, resp. complex
algebraic) smooth manifolds. Furthermore, if € is a locally finite collection of subanalytic
(resp. complex analytic, resp. complex algebraic) subsets of A, then the stratification may
be chosen so that each element of € is a union of strata of the stratification. In this case,
the stratification is called adapted to ¢ (see (GORESKY; MACPHERSON, 1988))).
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The strata of the next stratification satisfies a specific condition with respect to the fibres

of a function-germ f : X — C.

Definition 1.5.4. A Thom stratification 7" of X with respect to f is a Whitney stratification of
X such that each pair of strata (Vg, Vg ) satisfies the (a7)-Thom condition at a point p € Vg, that
is, the differential d f has constant rank on Vy, and for any sequence of points (p;) € Vi, such that

(pi) converges to p and Ker(d,,(f|v,)) converges to some T in the appropriate Grassmanian,
Ker(dy(flv,)) C T.

Remark 1.5.5. Thom stratifications of a complex analytic space X with respect to a function-
germ f: X — C always exist (see (HIRONAKA,|1976)).

1.6 Relative local polar varieties and intersection mul-
tiplicity

In this section, we will describe the relative local polar varieties, introduced by L& and
Teissier in (LE; TEISSIER,|1981) and (TEISSIER| 1982). We begin with the Nash modification.

Let (X,0) C (CV,0) be a complex analytic germ of dimension d in a open set U C CV.
Suppose that (X,0) is equidimensional, that is, all components of the regular part X,., of X
have same dimension, and reduced, that is, the local ring Oy ( has no nilpotent elements. Let
G(d,N) be the Grassmannian manifold of the vector subspaces of dimension d in CV, x € Xreg
and consider the Gauss map ¢ : X,.¢ — U x G(d,N) given by x — (X, T (Xreg))-

Definition 1.6.1. The closure of the image of the Gauss map ¢ in U x G(d,N), denoted by X,
is called the Nash modification of X. It is a complex analytic space endowed with an analytic

projection map v : X — X.

Example 1.6.2. The Nash modification of a cone is the cylinder:

-
- -
-

-
-
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Let us now define the relative Nash modification (see chapter I.1.2 in (TEISSIER| [1982)
for details). Let f : X — S be a morphism of reduced analytic spaces such that the relative Kéhler
differential module Q}l{ /
that X is equipped with an embedding (X,0) C (S,0) x (CV,0). For all commutative diagram

¢ is locally free of rank m = dimX —dim S over X \ Sing(X). Suppose

(X,0)—— (5,0) x (CV,0)

|

(5,0)

of a small enough representative of the germ of f at 0, where 7 is the natural projection from
(5,0) x (CN,0) to (S,0), the relative Nash modification is described as follows. Consider the
morphism ¢ : X \ Sing(X) — G(m,N) defined by ¢(x) = limy, Ty, £ (£ (1))

Definition 1.6.3. The relative Nash modification N/(X) C X x G(m,N) is the closure of the
graph of the morphism ¢¢ in X x G(m,N).

Considering the inclusion Ny(X) < X x G(m,N) and the natural projections
7 : X xG(m,N) — X and m, : X X G(m,N) — G(m,N), one can define a relative Gauss map
Yr : Np(X) — G(m,N) and the map vy : Np(X) — X in the following diagram (see page 418 of
(TEISSIER, |1982))

Now we are ready to define the relative local polar varieties. Let & be a sequence of

vector subspaces of CV
7 (0) CDy_1CDy_,C---CD; CD()ZCN,

where the codimension of D; is i.

If k and m are integers such that 0 < k <m < N, we consider in the Grassmanian manifold

G(m,N) the algebraic subvariety
0(2) ={T € G(m,N);dim(T N Dy, 1) > k}.

Remark 1.6.4. The algebraic subvariety 6;(%) depends only on D,,_;.; C CV, hence we will
also write 6k (Dyy—jv1)-
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Proposition 1.6.5. (1.3 Proposition 2 of (TEISSIER| 1982)) Let f : (X,0) — (S,0) be a mor-
phism as described before. Suppose that S is nonsingular and that X is equipped with an
embedding (X,0) C (S,0) x (CV,0). For all integer k,0 < k < m := dimX — dim S there exists
an open Zariski set Wy of G(N —m+k — 1,N) (of subspaces of codimension m — k + 1 of CM)y
such that for all D,,, ;.1 € W,

1. }/}Zl(ck(Dm_k+|)) N vfl(X\Sing(X)) is reduced and dense in the set yfl(ck(Dm_kH))
and y;l (0k(Dm—k+1)) is empty or purely of codimension m — k+ 1 in N¢(X);

2. If }/;1 (ok(Dp—k+1)) N vj?l (0) is not empty, then

dim ¥, ' (6k(Dm—k41)) NV, ' (0) = dim v, '(0) — k.

As a consequence of this proposition, Teissier proved the following result about the
structure of the set P(f; Dyt 41) := [V(¥; " (0k(Dm—r11)))]-

Corollary 1.6.6. (Corollary 1.3.2 (TEISSIER, [1982)) The closure P (f;D,, k1) of
Pi(fsDym—i+1) N Xreq in X is a closed reduced analytic subspace of X, empty or of pure codimen-

sion k.

Definition 1.6.7. P,(f;D,, 1) is called the relative local polar variety of codimension k

associated to f and D, 1.

There is an invariant associated to varieties that is useful to describe the local geometry
of the variety around some fixed point. Let us see the algebraic definition of this invariant. For
that we follow (MATSUMURA| [1989).

Let (A,.#') be a Noetherian local ring of dimension d, M be a finite A- module and g be
a ./ - primary ideal of A. By §14 of (MATSUMURA, |1989), the Samuel function / : N — N,
M

given by [(n) = length <q”+—lM>’ can be written, for n sufficiently large, as a polynomial in n,

with rational coefficients and whose coefficient of higher degree is E(ZI+M), e(q,M) € Z.

Definition 1.6.8. The integer e(gq,A) is called the multiplicity of the ideal ¢. In the case where
q is the maximal ideal .# of A, e(.# ,A) is called the multiplicity of the local ring A.

Definition 1.6.9. Let V be a complex variety and x be a point in V. The multiplicity of V in x is
the multiplicity of the local ring Oy .

In (TEISSIER| [1982), Teissier proved that the multiplicity of the local polar variety does

not depend on the sequence of vector spaces chosen, but on the analytic type of the morphism f.

Theorem 1.6.10. (Theorem 3.1 of (TEISSIER| 1982)) For each integer k,0 < k < m = dimX —
dim S, there exists an open Zariski set Wy in G(N —m+k — 1,N) such that the multiplicity
mo(P(f; 2)) of P(f; ) in 0 does not depend on & € W, but only on the analytic type of the
germ of the morphism f in 0.
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Let us now describe the local polar varieties and the intersection multiplicities in the

specific context we will use. For that, let us recall the definition of the Tor module.

Definition 1.6.11. Let A be a ring and M be an A- module. A free resolution F, of M is an exact

complex of free A-modules F;
Fo:o—FEY%E ... YR,
such that Coker(d;) =M

Definition 1.6.12. Let M and N be A- modules and F, be a free resolution of M. The i-th
Tor-module Tor;“(M ,N) of M and N is the i-th homological group of the complex F, ®4 N,

Fo@uN: - — FEOuN 25 F  @uN — - —s FL @ N -2 Fy @4 N.

Remark 1.6.13. In the above definition, if G, is a free resolution of the A-module N, the i-th
Tor-module Tor;“(M ,N) of M and N can also be defined by the i-th homological group of the
complex G, @4 M.

Let (X,0) C (CV,0) be an equidimensional complex analytic reduced space of dimension
d in a neighborhood of the origin, f : (X,0) — (C,0) be a complex analytic function-germ and [
be a generic linear form over (X,0) Let #" = {V;} be a stratification of a small representative X

of (X,0) and d; = dimV;. We denote by F%f the relative local polar curve of codimension d; — 1
Vi

associated to f and V;. Denoting V;N{f = 0} by v/ and using (LOESER, |1984), the intersection

multiplicity / (Vf

o f\ ) of FO‘ at 0 in Vif can be computed with the sum

. Oy

J>0

Vi

By Corollary|1.6.6, ?‘

ﬁr% is Cohen- acaulay Since ﬁl—o is Noetherian, it is finitely generated and then, by
Vi

Corollary B.8.12 of (GREUEL; LOSSEN SHUSTIN, 2007)), this local ring is flat. Therefore,
By Proposition B.3.2 (page 403 (GREUEL; LOSSEN; SHUSTIN, 2007)),

is a reduced curve, what implies that it is Cohen-Macaulay. Therefore,

Ow.0) .
Tor; ™" (ﬁﬁ}‘ ,05r) =0, forall j > 1.
V l

So,
—f %0
[(V,, Il )—longﬂvbo Tor, WP%J%” :
: iy

In (LOESER, |1984), Loeser also shows (page 213) that, in fact,

s ﬁﬁ}\v 0

Ty
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Since I'Y, is one-dimensional, for a regular value 0 < |§| < 1 of f, 1—(}'v Nf1(8) is

fly
a finite number of points. So, the degree of the function f : 1“%7 — C is a way to compute
Y
the complex dimension above, which is in this case the number of points in 1"% 1 (see
Vinf=1(9)

(NUNO-BALLESTEROS; TOMAZELLA, 2008)).

1.7 The local Euler obstruction and the Euler obstruc-
tion of a function

In this section, we will see the definition of the local Euler obstruction, a singular
invariant defined by MacPherson in (MACPHERSON; 1974) and used as one of the main tools
in his proof of the Deligne-Grothendieck conjecture about the existence and uniqueness of Chern

classes for singular varities.

Let (X,0) C (C",0) be an equidimensional reduced complex analytic germ of dimension
d in an open set U C C". Consider a complex analytic Whitney stratification ¥ = {V, } of U
adapted to X such that {0} is a stratum. We choose a small representative of (X,0), denoted by
X, such that 0 belongs to the closure of all strata. We write X = U?:OV,-, where Vp = {0} and
V4 = Xyeg, Where X, is the regular part of X. We suppose that Vp,Vy,...,V, | are connected
and that the analytic sets Vp, V1, ...,V are reduced. We write d; = dim(V;), i € {1,...,q}. Note
thatd, =d.

Let G(d,N) be the Grassmannian manifold and X the Nash modification of X. Consider
the extension 7 of the tautological bundle over U x G(d,N). Since
X Cc U x G(d,N), we consider 7 the restriction of 7 to X, called the Nash bundle, and
n: .7 — X the projection of this bundle.

In this context, denoting by ¢ the natural projection of U x G(d,N) at U, we have the

following diagram:

Considering ||z|| = \/z1Z1 + - -- + zn2n, the 1-differential form w = d||z||? over CV de-
fines a section in T*C" and its pullback ¢*w is a 1- form over U x G(d,N). Denote by W the

restriction of @*w over X, which is a section of the dual bundle .7 *.

Choose & small enough for W be a nonzero section over v~!(z),0 < ||z|| < &, let B¢ be
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the closed ball with center at the origin with radius € and denote by
1. Obs(T*,w) € H*(v~1(Be),v~'(Se),Z) the obstruction for extending w from v—!(S;)
to v (Be);
2. Oy-1(8,),v-1(s,) the fundamental class in Hog(v=1(Be),v(Se), Z).
Definition 1.7.1. The local Euler obstruction of X at 0, Eux(0), is given by the evaluation

Eux (0) = (Obs(T*,W),0y-1(5,) y-1(s,))-

Let us see some properties of the local Euler obstruction.
Remark 1.7.2. 1. The local Euler obstruction of X at a regular point of X is 1.

2. The local Euler obstruction at a point of a curve is the multiplicity of this point at the curve.
(See (GONZALEZ-SPRINBERG, |1981))

3. The local Euler obstruction is constant on the strata of a Whitney stratification.(See
(BRASSELET; SCHWARTYZ, 1981))

In (BRASSELET; LE; SEADE, 2000), Brasselet, L& and Seade proved a formula to

calculate the Euler obstruction using generic linear forms.

Theorem 1.7.3. (Theorem 3.1 of (BRASSELET; LE; SEADE, 2000)) Let (X,0) and ¥ be given
as before, then for each generic linear form /, there exists & such that for any € with 0 < € < &

and 8 # 0 sufficiently small, the Euler obstruction of (X,0) is equal to

Eux(0) = Y 2 (Vi Ben 1 (8)) Eux (V)
i=1

where x is the Euler characteristic, Euy (V;) is the Euler obstruction of X at a point of V;, i =
I,...,qand 0 < || < e K I.

Let us give the definition of another invariant introduced by Brasselet, Massey,
Parameswaran and Seade in (BRASSELET et al., 2004). Let f : X — C be a holomorphic
function with isolated singularity at the origin given by the restriction of a holomorphic function
F : U — C and denote by VF (x) the conjugate of the gradient vector field of F in x € U,

- JOF  OF
VF(X) = (8—)61,,5)

Since f has isolated singularity at the origin, for all x € X \ {0}, 7;:(V;(x)) is transverse
to Ker(dyF), that is,
_ T
Ang(VF (). T,(,(0)) < 7.
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where V;(x) is a stratum containing x and Ang(-, -) denotes the angle between two nonzero vectors.
Therefore, the projection &;(x) of VF(x) over Ty(V;(x)) is nonzero. Using this projection, the
authors, in (BRASSELET et al.,[2004), constructed a stratified vector field over X, denoted by
V£ (x). Let € be the lifting of V £ (x) as a section of the Nash bundle 7 over X, without singularity
over v-1(XNSe).

Let 0(&) e H* (v 1 (X NBe),v~ 1 (X NS¢)) be the obstruction cocycle for extending ¢

as a nonzero section of T inside v~ (X N B;).

Definition 1.7.4. The local Euler obstruction of a function f,Euy x(0), is the evaluation of
0(Z) on the fundamental class [V~ (X NBe), v (X NSe)].

The next theorem compares the Euler obstruction of a space X with the Euler obstruction

of function defined over X.

Theorem 1.7.5. (Theorem 3.1 of (BRASSELET ef al., [2004)) Let (X,0) and ¥ be given as
before and let f: (X,0) — (C,0) be a function with an isolated singularity at 0. For 0 < |d| <
€ < 1, we have

x(VinBe N f71(8)).Eux (V;).

e

Euf7x(0) = FEux(0) —
1

~

Let us now see an example that justifies why the Euler obstruction of a function is seen as a

generalization of the Milnor number.

Example 1.7.6. Let f be a holomorphic function over a n-dimensional nonsingular complex
analytic space (X,0) with an isolated singularity in 0. In this case, Fux (0) = 1, Eux(X\{0}) =1
and the fibre X \ {0} NBe N f~1(t)) has the homotopy type of a bouquet of wu(f) (n—1)-
dimensional spheres, where 0 < |fp] < € < 1. So,

X(X\{0}NBen £ (19)) = 1+ (=)™ ().

By Theorem|1.7.5] considering Vo = {0} and V; = X \ {0},

1
Eupx(0) = Eux(0)— Y x(VinBenf~(t0))-Eux (V;)
i=0

= 1—(0+(1+ (=1)4meX=1y(r)))
)

Let us now see a definition we will need to define a generic point of a function-germ. Let

¥ = {V) } be a stratification of a reduced complex analytic space X.

Definition 1.7.7. Let p be a point in a stratum Vg of 7. A degenerate tangent plane of ¥’
at p is an element T of some Grassmanian manifold such that 7 = lim 7).V, where p; € Vq,
pi—p
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Definition 1.7.8. Let (X,0) C (U,0) be a germ of complex analytic space in C" equipped
with a Whitney stratification and let f : (X,0) — (C,0) be an analytic function, given by the
restriction of an analytic function F : (U,0) — (C,0). Then 0 is said to be a generic point of f
if the hyperplane Ker(dyF) is transverse in C" to all degenerate tangent planes of the Whitney

stratification at 0.

Now, let us see the definition of a Morsification of a function.

Definition 1.7.9. Let # = {Wy,W,...,W,}, with 0 € Wy, a Whitney stratification of the
complex analytic space X. A function f : (X,0) — (C,0) is said to be Morse stratified if

dimWy > 1, f|w, : Wo — C has a Morse point at 0 and 0 is a generic point of f with respect to
W;, for all i #£ 0.

A stratified Morsification of a germ of analytic function f: (X,0) — (C,0) is a defor-
mation f of f such that f is Morse stratified.

In (SEADE; TIBAR; VERJOVSKY, 2005), Seade, Tibir and Verjovsky proved that
the Euler obstruction of a function f is also related to the number of Morse critical points of a
stratified Morsification of f.

Proposition 1.7.10. (Proposition 2.3 of (SEADE; TIBAR; VERJOVSKY, 2005)) Let f: (X,0) —

(C,0) be a germ of analytic function with isolated singularity at the origin. Then,
Eugx(0) = (=1)"nyeg,

where n,., is the number of Morse points in X, in a stratified Morsification of f.

1.8 Brasselet number

In this section, we present definitions and results needed in the development of the results
of this work. The main reference for this section is (MASSEY/ 1996).

Let X be a reduced complex analytic space (not necessarily equidimensional) of di-
mension d in an open set U C C" and let f : (X,0) — (C,0) be an analytic map. We write

V(f)=rf10).

Let us specify the stratification we will need in this setting.

Definition 1.8.1. A good stratification of X relative to f is a stratification #" of X which is
adapted to V(f) such that {V; € ¥,V, € V(f)} is a Whitney stratification of X \ V(f) and
such that for any pair (Vy,Vy) such that V) € V(f) and V), C V(f), the (as)-Thom condition is
satisfied. In this setting, that is equivalent to the following: if p € Vy and (p;) € V, are such that
(pi) = p and T, V(fl|v, — flv, (pi)) converges to some .7, then T,,V, C 7.
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Example 1.8.2. If f: (X,0) — (C,0) has a stratified isolated critical point and 7 is a Whitney

stratification of X, then

(Vi \ X/, v, nx/\ {0},{0},V, € ¥} (1.1)

is a good stratification of X relative to f, called good stratification induced by f, where
X/ =Xxn{f=0}.

Let ¥ be a good stratification of X relative to f.

Definition 1.8.3. The critical locus of f relative to 7', X f, is given by the union

vf= U Z(flv)-

VAG“//

Proposition 1.8.4. (Proposition 1.3 of (MASSEY, |1996)) Given an analytic map f : X — C,
a stratification ¥ of X, and a point p € f~1(0), there exists a neighborhood of p in which

Ty f C f71H0).

Definition 1.8.5. Given an analytic map f : X — C and a point p € £~!(0), the Milnor fiber of
S at p, Fy ,, is defined to be the (homeomorphism-type of the) space obtained by the intersection

F.p:=Be(p)NXNf~1 (&),
where 0 < |&| < € and B¢(p) is the closed ball with center in p and radius €.

We remark that the previous definition is independent of all the choices.

Definition 1.8.6. Suppose that we are given two maps f : X — C and g : X — C. Define the
map ® := (f,g) : X — C?. Let Y be an analytic subset of X. The relative polar variety of Y
with respect to f and g, denoted by I's ,(Y), is the closure in X of the critical locus of q)|Y,eg\X 2
where Y, denotes the regular part of ¥ and X/ = X N {f = 0}.

Since each stratum V) of a stratification 7" is a complex analytic submanifold, the
relative polar variety of V, with respect to f and g, 'y ,(V} ), is defined. Also, if V) C V(f),
then Ff,g(V,l) = 0.

Definition 1.8.7. The relative polar variety of f and g with respect to 7', I';,(7), is given
by the union U I'f 4 (V).

Definition 1.8.8. If Y is an analytic subset of X, the symmetric relative polar variety of Y
with respect to f and g, I'; ,(Y), is the closure in X of the critical locus of Ply,, .\ (xfuxs), where
X/ =XN{f=0}and X¢ =XN{g=0}.
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Definition 1.8.9. If ¥ = {V, } is a stratification of X, the symmetric relative polar variety of
f and g with respect to 7, I'; ,(¥), is the union U I'f ¢(Vy).

Definition 1.8.10. Let ¥ be a good stratification of X relative to a function f : (X,0) — (C,0).
A function g : (X,0) — (C,0) is prepolar with respect to 7" at the origin if the origin is a

stratified isolated critical point, that is, O is an isolated point of X g.

Remark 1.8.11. (See page 976 of (MASSEY), 1996)) The last definition is equivalent to the
following statements:

1. For any analytic extension g of g to an open neighbourhood of the origin in C"*, £ g is

empty or has the origin as an isolated point;

2. V(g) transversely intersects each stratum of #” in a neighbourhood of the origin, except
perhaps at the origin itself.

Definition 1.8.12. A function g : (X,0) — (C,0) is tractable at the origin with respect to a
good stratification 7 of X relative to f : (X,0) — (C,0) if dimo T’y 4,(7") < 1 and, for all strata
Ve € X7, glv, has no critical point in a neighbourhood of the origin except perhaps at the origin
itself.

Proposition 1.8.13. (Proposition 1.12 of (MASSEY), [1996)) Suppose that ¥ is a good strati-
fication of X for f at the origin, and that g is prepolar with respect to #” at the origin. Then,
dimgV (g) NIy o(7) < 0 (where < 0 indicates an empty germ at the origin). Hence, 'y ,(¥") =
r r.¢(7) and each of these sets is either one-dimensional or empty at the origin. In particular, g

is tractable at the origin with respect to ¥ relative to f.

Remark 1.8.14. (See page 974 of (MASSEY| 1996) or page 135 of (DUTERTRE; GRULHA|
2014))) If the symmetric relative polar variety f‘f,g(”// ) has dimension one, for each V; € ¥,
it is possible to associate a multiplicity i ([f4(V;)) to each I'f4(V;) in the following way:
if the stratum V; is one-dimensional, u/(I's(V;)) := 1. If V; is not one-dimensional, let v
be a component of I's4(V;) and p be a point of v\ {0} close to the origin. The mapping
g:Vin{f = f(p)} — C has an isolated singularity at p and let u" the Milnor number of this
singularity. Then pu/ (I'f.4(V;)) is the sum of Milnor numbers 1" over all components v. Note
that, if g is prepolar with respect to #” at the origin, by Proposition Lro(V)=Tr(7),
and we can write i/ (' ,(V;)) instead of u/ (T's.4(V;)).

Let us now see the definition of decent analytic function-germs. Let ¥ = {V, } be a
stratification of a reduced complex analytic space X.

Definition 1.8.15. Let g : (X,0) — (C,0) be a function-germ. For any analytic stratification %’
of X, 0 < |8] < 1 and any function f : (X,0) — (C,0), g is decent with respect to 7" relative
to f if there exists a neighborhood Q of 0 such that g : QN XN f~!(8)\ X¢ — C has only generic

points.
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Proposition 1.8.16. (Proposition 1.14 of (MASSEY/, [1996)) Let ¥ be a good stratification of X
relative to f at the origin. Then, for a generic choice of linear form, /, / is decent to ¥ relative to

f and, moreover, f is decent with respect to ¥ relative to /.

Another concept useful for this work is the notion of constructible functions. Consider a
Whitney stratification % = {Wj,...,W,} of X such that each stratum W; is connected.

Definition 1.8.17. A constructible function with respect to the stratification #  of X is a function

B : X — Z which is constant on each stratum W;, that is, there exist integers f1,...,,, such that
q
B=Y tlw,
i=1

where 1y, is the characteristic function of W;.

Definition 1.8.18. The Euler characteristic (X, ) of a constructible function f8 : X — Z with
respect to the stratification % of X, given by § = Z?zl ti. 1w, 1s defined by

2(X.B) = iz,-.xwvi).

Before we state the Dutertre and Grulha results, we need to introduce some definitions
about normal Morse data. We cite as main references (GORESKY; MACPHERSON, |1988)) and
(SCHURMANN; TIBAR, 2010). The first concept we present is the complex link, an object

analogous to the Milnor fibre, important in the study of complex stratified Morse theory.

Let V be a stratum of the stratification ¥ of X and let x be a point of V. Let
g:(C",0) — (C,0) be an analytic complex function-germ such that the differential form Dg(x)
does not vanish on a degenerate tangent plane of #” at x. Let N be a normal slice to V at x, that

is, N is a closed complex submanifold of C" which is transversal to V at x and NNV = {x}.

Definition 1.8.19. Let B; be the closed ball of radius € centered at x. The complex link /iy of V
is defined by

ly=XNNNB:N{g= 20},

where 0 < |0 < € < 1.

The normal Morse datum NMD(V) of V is the pair of spaces

NMD(V) = (XNNNBg,XNNNBeN{g=5}).

In section 2.3 (Part IT) of (GORESKY; MACPHERSON, 1988), the authors explained
why this two notions are independent of all choices made.
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Definition 1.8.20. Let 3 : X — Z be a constructible function with respect to the stratification
¥ . Its normal Morse index 1n(V, ) along V is defined by

nV,B)=x(NMD(V),B) = x(XNNNBe,B) — x(lv,B).

In the case where the constructible function is the local Euler obstruction, the following
identities are valid ((SCHURMANN; TIBAR, 2010), page 34):

NV, Euy) =1,if V' =V and n(V', Euy;) = 0,if V' # V.

We present now the definition of the Brasselet number and the main theorems of
(DUTERTRE; GRULHA| 2014)), used as inspiration for this work.

Let f: (X,0) — (C,0) be a complex analytic function germ and let 7" be a good stratifi-
cation of X relative to f. We denote by Vi,...,V, the strata of ¥ that are not contained in { f =0}
and we assume that Vi,...,V, are  connected and that V, =
Xreg \ {f = 0}. Note that V,, could be not connected.

Definition 1.8.21. Suppose that X is equidimensional. Let 7" be a good stratification of X relative
to f. The Brasselet number of f at the origin, By x(0), is defined by

Byx(0) =YL, x(Vinf~'(8) NBe)Eux (Vi),
where 0 < |8 < € < 1.

Remark: If ch is a connected component of V,,, Eux (VC;) =1.

Notice that if f has a stratified isolated singularity at the origin, then
B x(0) = Eux(0) — Euy x(0) (see Theorem|[1.7.5).
In (DUTERTRE; GRULHA, 2014), Dutertre and Grulha proved interesting formulas

describing the topological relation between the Brasselet number and a number of certain critical
points of a special type of deformation of functions. Let us now present some of these results.

Fist we need the definition of a special type of Morsification, introduced by Dutertre and Grulha.

Definition 1.8.22. A partial Morsification of g : f~!1(§)NX N B, — C is a function
g:f1(8)NXNBe — C (not necessarily holomorphic) which is a local Morsification of all
isolated critical points of g in f~!(8) N X N{g # 0} N B, and which coincides with g outside a

small neighborhood of these critical points.

Let g: (X,0) — (C,0) be a complex analytic function which is tractable at the origin with
respect to ¥ relative to f. Then [/ ¢ is a complex analytic curve and for 0 < |§| < 1 the critical
points of g| ;-1 (5)nx in Be lying outside {g = 0} are isolated. Let g be a partial Morsification of
g:f1(8)NXNBe — C and, for each i € {1,...,q}, let n; be the number of stratified Morse
critical points of g appearing on V;N f~1(8) N {g # 0} N Be.
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Theorem 1.8.23. (Theorem 4.2 of (DUTERTRE; GRULHA, 2014)) Let B : X — Z be a con-
structible function with respect to the stratification #". Suppose that g : (X,0) — (C,0) is a com-
plex analytic function tractable at the origin with respect to ¥ relative to f. For 0 < || < € < 1,

we have

XXNfH8)NBe, B) = x(X Mg~ (0)Nf~H(8) NBe, B) = XL (=) 'nim (Vi, B).
In the case that B = Euy, the last theorem implies the following.

Corollary 1.8.24. (Corollary 4.3 of (DUTERTRE; GRULHA| 2014)) Suppose that X is equidi-
mensional and that g is tractable at the origin with respect to ¥ relative to f. For 0 < |§]| < € < 1,

we have
XX N f7H(8) NBe, Eux) — (X Mg~ (0) N f~1(8) NBe, Eux) = (—1)4" .
If one supposes, in addition, that g is prepolar, a consequence of this result is a Lé-Greuel
type formula for the Brasselet number.

Theorem 1.8.25. (Theorem 4.4 of (DUTERTRE; GRULHA, [2014)) Suppose that X is equidi-
mensional and that g is prepolar with respect to ¥ at the origin. For 0 < || < € < 1, we

have
By x(0) =By xs(0) = (—1)% 'ny,

where 7, is the number of stratified Morse critical points on the top stratum V, N f~1(8) N B
appearing in a Morsification of g : X N f~1(8) N B, — C.

Suppose that X is equipped with a Whitney stratification " = {Vp,Vi,...,V,} with
Vo = {0}, and f,g : X — C have an isolated stratified singularity at the origin with respect to
this stratification. We give now some results proved by Dutertre and Grulha in Section 6 of
(DUTERTRE; GRULHA, [2014) in this setting.

Proposition 1.8.26. Suppose that g (resp. f) is prepolar with respect to the good stratification
induced by f (resp. g) at the origin. Let B : X — Z be a constructible function with respect to the
Whitney stratification #". For 0 < |0]| < € < 1,

XX g7 (8)NBe, B) = x (X4 f71(8) NBe, B).
A corollary of this proposition is the following result.

Corollary 1.8.27. Suppose that X is equidimensional and that g (resp. f) is prepolar with respect
to the good stratification induced by f (resp. g) at the origin. Then
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By xs (0) = Bg7xf (0).

In (DUTERTRE; GRULHA| 2014), the authors also related the topology of the general-

ized Minor fibres of f and g and some number of Morse points.

Theorem 1.8.28. Suppose that g (resp. f) is prepolar with respect to the good stratification
induced by f (resp. g) at the origin. Let 8 : X — Z be a constructible function with respect to the
Whitney stratification . For 0 < |0] < € < 1,

x(XNfF Y 8)NBe,B)— x(XNg 1(8)NBe,B) =L, (— D)% (i —mi)n(Vi, B),

where n; (resp. m;) is the number of stratified Morse critical points on the stratum
Vin f71(8) N Be (resp. V; N g '(8) N Be) appearing in a Morsification of
g:XNfY8)NBe — C (resp. f: XNg 1 (8§)NBe — C).

In the case where B = Euy, the last theorem implies the following result.

Corollary 1.8.29. Suppose that X is equidimensional and that g (resp. f) is prepolar with respect
to the good stratification induced by f (resp. g) at the origin. Then

Bfx(0) = Bgx(0) = (= 1)~ (ng —my),

where n, (resp. my) is the number of stratified Morse critical points on the top stratum
V, N fY8) N Be (resp. V, N g (8) N B;) appearing in a Morsification of
g:XNf Y 8)NBe — C (resp. f: XNg 1 (8§)NBe — C).

Applying Corollary to the case where the function g is a generic linear form, one
obtains the following result.

Corollary 1.8.30. Suppose that X is equidimensional. Let H be a generic hyperplane. Then
EMXf(O) = Bf,XﬂH(O)-

The Brasselet number By xnx(0) can also be compared to B x (0) using the dimension

d of (X,0) and the relative local polar curves.

Corollary 1.8.31. Suppose that X is equidimensional. Then
Byx(0) = Brxrn(0) = (=1)* (TG X7),
where H is a generic hyperplane.

At last, a consequence of Corollary [1.8.29]in the case where g is a generic linear form, is
the following.
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Corollary 1.8.32. Suppose that X is equidimensional. Let / be a generic linear form. Then

W (Cri(Ve)) — ' (Tra(Vg)) = (—=1)?Eusx(0).
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CHAPTER

BRASSELET NUMBER AND FUNCTIONS
WITH ONE-DIMENSIONAL SINGULAR SET

2.1 Some results for functions with arbitrary singulari-
ties

Let (X,0) be a reduced equidimensional analytic germ of dimension d in an open set
U cCC"and f,g: (X,0) — (C,0) be two germs of functions. Let ¥ be a good stratification
of X relative to f and suppose that the critical locus of g, ¥, g, is one-dimensional and that

Xygn{f=0}={0}.

Let Vi, ...,V, be the strata of ¥ not contained in { f = 0}. Suppose that {0} is a stratum
of {f =0}, that for each i € {1,...,g— 1}, V; is connected, V, is equal to X,., \ {f =0} and
that d; = dimV;. In this case, we can construct a good stratification of X relative to f that gives
us also a good stratification of X N {g = 0} relative to f|xn,—0}- We start this section with the

construction of this stratification.

Lemma 2.1.1. (First stratification lemma) Let 7" be a good stratification of X relative to f
and ¥/ the collection of strata of # contained in {f = 0} (including the stratum {0}). Then, the

refinement
7' ={VA\Tyg VinTygie {1, ...} bur 2.1)

is a good stratification of X relative to f and ¥’ {8=0} i a good stratification of X N {g = 0}

relative to f|xn(y—0), Where
8= = {Vlﬂ {g=0}\Zyg ViNZygic {1,..-,61}} U7 n{g=0},

and 7/ N {g = 0} denotes the collection of strata of type V/ N {g =0}, with V/ € #/. Moreover,
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if g is tractable at the origin with respect to ¥ relative to f, then g is tractable at the origin with

respect to ¥ relative to f.

Proof. Since Xy gN{f =0} = {0} and Vi,...,V, are the strata of /" not contained in {f = 0},
we can write Xy g = {0} U(ViNXyg)U...U(V;NEyg). Let us show that the refinement of 7/,

7 ={Vi\ZygVinTygie{l,....q} busT,

is a good stratification of X relative to f. Since the collection of strata contained in { f = 0} was

not refined, {f = 0} is a union of strata of ¥”. Now we will show that

{Vae V'V g {f =0t} = {V\Zyg inZygie{l,....a}}

is a Whitney stratification of X \ { f = 0}. We can refine this stratification to obtain a Whitney strat-
ification. But since ¥ is a good stratification of X relative to f,
{Vo € V;Va € {f = 0}} is a Whitney stratification of X \ {f = 0}. Since Lyg is closed,
Vo \ 2y g is an open subset of V,; and then Whitney’s condition (b) is verified over the strata
of type Vi \ £y g. So, the refinement should be done only over the stratum of type X4 gNV;.
Since X g is one-dimensional, a refinement of X g NV; would be done by taking off a finite
number of points. So, in a sufficiently small neighborhood of the origin, Whitney’s condition (b)
is verified over {V;\ Xy g, ViNEyg,ic {1,...,q}}.

Atlast, let us verify the Thom condition. Let p be a pointin Vg C { f =0} and (py) be a se-
quence of points in Vi ¢ {f = 0}. Suppose that ]}im pr = p and that
—>00
]}1_{1010 TV (f1ve = flve(Pk)) = T. We must show that T,Vg C T.

Let Vo =V;NEXyg forsomei € {1,...,q}. Since (py) is a sequence of points in V;NXy g
and Ly g is one-dimensional, (p;) must converge to the origin, that is, p = 0 and Vg = {0}. So,
{0} =T,Vg CT.

Let us now verify the Thom condition for Vo, = V;\ Ly g,i € {1,...,q}. We have

Tpkv(f|V,-\Z«y/g _f|‘/,-\21/g(pk)) = Tka(f|Vl~ _f’Vi(pk))v

and since ¥ is a good stratification of X relative to f, the Thom condition is verified for (V;,Vp).
Hence, T,V C ;}i_{?oTka(ﬂVi — flvi(pr)) = ]}EI(}OTPkV(ﬂVi\EVg — flvaz,¢(Pk)) = T. Therefore,

¥ is a good stratification of X relative to f.

Let us now show that 7/{8=0} is a good stratification of X N{g = 0} relative to £y {g=01>
yH8=0) = {Vlﬂ{g =0}\Zyg,ViNZyg,i€ {1,---,61}} Uy’ n{g=0}.

Since Ly gN{f =0} = {0}, {g = 0} intersects each stratum of ¥/ transversely. Therefore, for
each V; € ¥/, {g =0} NV; is a complex analytic submanifold of V;. Hence, {f =0} N {g = 0}

is a union of strata contained in ¥/ N {g = 0}. Now, we will verify that
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stratification of X N {g = 0} \ {f = 0}. Consider a pair of strata of type
(VinXyg,ViNXyg). If necessary, we can refine these strata to guarantee Whitney’s condi-
tion (). Since Ly g has dimension one, this refinement would be given by taking off a finite
number of points. Therefore, in a sufficiently small neighborhood of the origin, Whitney’s
condition (b) is verified for this type of stratum. Now, let us verify this condition for pairs of
strata of the type (V1 {g = 0} \Eyg,V; N {g = 0} \g) and (V;"\{g = 0}\Z5g,V;Nyg).

1. Let us show that (V;N{g =0}\Zyg,ViN{g =0}\XLyg) is Whitney regular. Since
these strata contain no critical points of g,V;N{g = 0} and V;N {g = 0} are transverse
intersections. Therefore, (V;N{g=0}\Xyg,V;N{g=0}\Xyg) is Whitney regular, since
(V;,V;) is Whitney regular. (See (ORRO; TROTMAN, 2010)).

2. Let us show that (V;N{g =0}\Xyg,V;NEyg) is Whitney regular. The intersection
V;N{g = 0} is transverse, since it contains no critical points of g. Whitney’s condition ()
could fail over V; N Xy g, but since Xy g is one-dimensional, we can refine this stratum by
taking off a finite number of points and ensure that, in a sufficiently small neighborhood
of the origin, (V;N{g =0} \Xyg,ViNZyg) is Whitney regular.

Let us now verify the Thom condition over the strata of ¥"{¢=0}. Let V,; ¢ {f = 0} and
Vg C {f = 0} be strata of "18=0} p be a point in Vi and (p;) be a sequence of points in V.
Suppose that lim (p;) = p and that lim 7,,,V (f|v, — f|v, (pi)) = T- We must show that T,Vg C T.
If Vg = {0}, li,o\o/[; = {0} and therli]z;Vﬁ C T. Suppose now that Vg # {0}. Notice that, since
YygN{f=0}={0} and {0} # Vg C {f =0}, p € Vg implies that p ¢ Xy g. As we have seen
above, it is sufficient verify the Thom condition for Vo, = V;N{g =0} \ £ g. We have,

T,V (flva = flva(Pi)) = TV (flvinge=ons,g — flvingg=opz,(Pi)
= T,V(flv,— flv,(p)) NT,V (3),

which implies that

l.h_{ngiV(ﬂVa —flve(pi)) = lim T,V (flv, = flv;(pi)) N T,V (3)
C lim T,V (flv, — flv,(pi)) N im T,V (2),
1—ro0 |—o0
where f and g denote analytic extensions of f and g to an open neighborhood of the origin in the

ambient space (U,0) of (X,0). Since p,p; &€ Ly g, if lim Tin(ﬂvi —f|vl.(p,~)) = Ti, we have
i A A
that T C 71 N T,V (g). On the other hand, if Vg = V) N{g =0}, with V}, € ¥/ and p ¢ £y,

T,Vg =T,(Vin{g =0}) =T,V NT,V(3).
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Since the Thom condition is valid over ¥’, we have that T,,V;L C T,. Since g is tractable at
the origin with respect to ¥ relative to f, for p & Xy g,T,V(g) intersects TpV/l transversely.
Therefore, 7,V (g) intersects 7; transversely. This implies that

T = m T,V (7lv, — iy () NTp V(@) = Em T,V (Fly, = Fiv, () N lim 7,V (2)
= TINT,V(3).

Therefore,
TpV[i = TP(V;L N{g=0})= TPVA N Tpv(g) cnhn TPV(g) =T.

Suppose now that g is tractable at the origin with respect to 7" relative to f. Let us show
that g is tractable at the origin with respect to #” relative to f. For that we should verify that
(1): dimoI'f4(#") < 1; and that (2): g|v, has no singularity in a neighborhood of the origin,
except perhaps the origin itself, for Vy € ¥ contained in {f = 0}. Condition (2) is valid, since
we have not refined the strata contained in {f = 0}. Let us verify condition (1). Since for each
Vi ¢ {f =0}, Zgly, C {g =0}, we have

q q
Lre(7") = U @)l vazehnir-opute=0y = UZ(F: @) gr=opuge=op = Fre(¥)-
i=1

i=1

Then dimg /o (¥”) = dimoT's4(#) < 1 and condition (1) is verified. Therefore, g is tractable
at the origin with respect to 7#”. |

In the beginning we have supposed that X g is one-dimensional. Let us now give the
description we will use for this set. By definition, £y g = Uy, <y Xglv,, butsince Zy N{f =0} =
{0}, we can write £y g = U%_, Zglv, U{0}, where V is a stratum not contained in {f = 0}.
Since Xy g is one-dimensional at the origin, for each stratum Vy € ¥, Xg|y, is either one-
dimensional or the origin itself, and Zg|y, = Zg|y, U{0}. Let us verify that Xg|y, is an analytic
set. Using the description of the critical space in Chapter 4 of (LOOIJENGA, 1984), suppose
that dimg Vy, = k+ 1, let fi,. .., fj be the defining functions of Vi, at 0 and J;(f1,..., f;,g) denote
the ideal in &) generated by the i x i-minors of the Jacobian matrix of the map (fi,...,f,g).
The critical space of g|W is the subspace of ﬁév defined at O by the vanishing of fi,..., f; and
the (N — k) x (N — k)-minors of the Jacobian matrix of the map (f1,...,f;,g)- So,

Zglyy =V {1, )NV Uni(f1y -5 11,8))-

If the Jacobian matrix of the map (fi,...,f;) has maximal rank at a point x in Vg,
then x € Xg|~ if, and only if, x € V(Uy_«(f1,---,/1,8)), that is, x is a critical point of gly, . If
the Jacobian matrix of (fi,...,f;) has no maximal rank at x, then x is automatically a point
of V(Iy—«(f1;---,f1,8))- Therefore, Yg|;— = Xglv, USing(Vy), where Sing(Vy) denote the set
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of singular points of V. Then, Lg|y, = Zgly- \ Sing(Va) and Xgly, = gy \ Sing(Va). By
definition, Zg]w is an analytic set and by Theorem IV. 2.4.1 of (LOJASIEWICZ, |1991), so is
Sing(Ve,). Then, by Proposition 1V.8.3.5 (LOJASTIEWICZ, 1991), the closure Xg [\ Sing(Ve) is
an analytic set. So, by a consequence of the Remmert-Stein theorem (page 241, (LOJASIEWICZ,

1991)), Xg|v, has an irreducible decomposition into one-dimensional subvarieties, which will be
called branches,

Yglv, = Zglv, U{0} = bg, U...Ubg,.
Making this process for each stratum V,, we can decompose Xy g into branches b;,

q
yg= ] Zglv,U{0} =b1U...Ub,

a=1

where b; C Vg, for some o € {1,...,q}. Notice that a stratum V,, can contain no branch and
that a stratum V; can contain more than one branch, but, the way we described, a branch can not
be contained in two different strata. Let 0 be a regular value of f,0 < |6| < 1, and let us write,
foreach j € {1,...,r},f~1(8)Nb; = {xi,... Xy, }- So, in this case, the local degree my; of
flp; is k(j). Let € be sufficiently small such that the local Euler obstruction of X and of X# are
constant on b; N B. In this case, we denote by Eux (b;) (respectively, Euxs(b;)) the local Euler
obstruction of X (respectively, X¥) at a point of b; N Be.

The next theorem calculates, in our setting, the difference By x(0) — By xs(0) without

the prepolarity of g with respect to the good stratification relative to f at the origin.

We fix the good stratification ¥ of X relative to f constructed in Lemma given as

a refinement of the initial good stratification #" of X relative to f.

Theorem 2.1.2. Suppose that g is tractable at the origin with respect to ¥ relative to f. Then,
for0<|d|<ex 1,

By x(0)—Byx¢(0) =Xy mpp,(Eux (bj) — Euxs(b;)) = (=1)?"'m,

where m is the number of stratified Morse critical points of a partial Morsification of
g:XNf1(8)NBe — C appearing on X, N f~1(8) N{g # 0} N Be.

Proof. By Corollary [1.8.24] if 0 < [0]| < € < 1,
x(XNfH(8) NBe,Eux) — x(X Mg~ ' (0)Nf~'(8) NBe,Eux) = (1) 'm,
that is,

Brx(0)—x(X Mg~ (0)Nf~1(8) NBe, Eux) = (=1)*"'m.



52 Chapter 2. Brasselet number and functions with one-dimensional singular set

Let us now calculate (X Ng~'(0)N f~1(8)NBe, Eux).

x(XNg ' 0)Nf1(8)NBe,Eux) = Y, x(Ving '(0)Nf~"(8) NBe)Eux(V;)
Vi€Zyg
+ ), x(Ving '(0)n 1 (8) NBe)Eux (V;).
ViCXyg
If V; ¢ £y g, V; intersects {g = 0} transversely and Eux (V;) = Euxs(V;N g 1(0)). Let

us denote by Wy, ..., W; the strata contained in ¥4 g. Then, we obtain

AX g7 ()N fTH () NBe, Eux) = Y, x(Ving™ (0)Nf~'(8)NBe)Euys(Ving™' (0))
VigEyg
£ Y X Wng ()07 (8) NBe)Eux (W),
=1

For each W; C Xy g, let k; be the number of branches b;, containing in W;. Then,

xWing HO)Nf1(8)NBe) = Y, x(by, N 1 (8)NBe) = meblt
b, CW,

and then
Y x(W,ng ' (0)N £~ (8) NBe)Eux (W) = meb Eux(b;).
=1 j=1
Therefore,
x(XNg {O)Nf 1 (8)NBe,Eux) = Y, x(Ving (0)Nf 1 (8)NBe)Euxs(Ving~'(0))
Vidlyg
+ me’bjEux(bj).
j=1
On the other hand,

Brxe(0) = Y x(ing ' (0)nf~"(8)NBe)Euxe(Ving™'(0)

= Y x(ing '(0)nf'(8)NBe)Eux«(Ving ™ '(0))
ViEyg

£ Y A Wing T (0)1 £ (8) N Be)Euye(Wing 1 (0)).
=1

Using the notation of branches again, we obtain
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Brxe(0) = Y x(Ving ' (0)nf'(8)NBe)Euxe(Ving~'(0))
Viglyg
+ mf7bjEqu(bj).
j=1
Therefore,
xXNg ' 0)Nf N (8)NBe,Eux) = Y, x(Ving ' (0)nf1(8)NBe)Euxs(Ving ' (0))
Vidlyg

J
= Byxz(0)

— mf7bj(Equ(bj) —Eux(bj)) (2.2)
=1

J

.
+ mf,bjE”X (bj>
=1

Hence,
Bsx(0)—Byx¢(0) =Xy mpp, (Eux (bj) — Euxs(b;)) = (=1)"'m.
n

This result shows that, in this case, the Lé-Greuel formula for the Brasselet number of g

presents a defect given by the sum of differences of Euler obstructions above.

Remark 2.1.3. In Theorem if we suppose that g is prepolar, using the same previous
notations, we have that the set £y gN{f = 0} is empty, which gives us the Lé-Greuel type

formula
Brx(0) —Bfxs(0) = (—1)*"'m,

proved by Dutertre and Grulha in (DUTERTRE; GRULHA, [2014).

A consequence of Theorem [2.1.2]is a relation between the differences of the Euler

obstruction at the origin and at the branches. We need first the following lemma.

Lemma 2.1.4. Let V C CV be an analytic complex subset of dimension d and [ : CN — C be a
generic linear form. Then /~!(0) is transverse to V \ {0}.

Proof. We fix local coordinates (xi,...,xy) in CV and define, for each a = (ay,...,ay) € CV,
lo(x) = ajx; + -+ +anxy. Let W = {(x,a) € CN x CV;x € V\ {0},1,(x) = 0}. Then dimW =
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2N — (N —d+1) = N+d — 1. Consider the projection 7w : W — CV given by
(x,a) — a and let A C CV be the discriminant of 7.

If a € CV\ A, then V \ {0} intersects {I, = 0} transversely and 7~ ! (a), which is equal to
VA{0} N {la|y\{oy = O}, is a submanifold of W with dimension dimW —N=N+d—1-N =
d—1. |

Let [ be a generic linear form over C", X a complex analytic space equipped with a
Whitney stratification and 7 the good stratification of X induced by /. Then Lemma can be
applied to ¥ and we obtain a good stratification ¥ of X relative to / such that #’{8=0} is a good

stratification of X¢ relative to [ {g=0}-

Corollary 2.1.5. Let [ be a generic linear form over X and ¥ the good stratification of X induced
by . Suppose that g is tractable at the origin with respect to ¥ relative to /. For 0 < || < € < 1,

we have,
Eux(0) — Euxe(0) — X my, (Eux (bj) — Euxe(bj)) = (—=1)*"'m,

where m is the number of stratified Morse critical points of a partial Morsification of
g:XN17Y(8)NBe — C appearing on X,,, NI~ 1(8) N {g # 0} N B, and my; is the multiplicity
of the branch b; at the origin.

Proof. Since / is a generic linear form over X and X g is one-dimensional, by Lemma [2.1.4}
YygNn{l =0} = {0}. Notice that, since  is generic, the local degree m; ;,; of |, at the origin is
precisely the multiplicity of the branch b; at the origin, which we will denote by my, . Therefore,
applying the previous theorem, since B; x(0) = Eux(0) and B; xs(0) = Euxs(0), we have the

formula. [ |

Remark 2.1.6. By Corollary the number m of stratified Morse critical points of the
Morsification of g : X N/~1(8) N B — C appearing on X,,, N{~!(8) N {g # 0} N B, does not

depends on the generic linear form /.

2.2 Some results for functions with isolated singularity

In Section 6 of (DUTERTRE; GRULHA| 2014), Dutertre and Grulha proved several
relations between the Brasselet number of functions with isolated singularity and other invariants.
In this section, we provide the generalization of some of their results to the context we describe
in the following. Let X be an analytic complex space and # = {W,,...,W,} be a Whitney
stratification of X with Wy = {0}. From now on, we consider f and g functions defined over X
such that f has an isolated singularity at the origin, X g is a one-dimensional analytic set and
Yygn{f=0}=1{0}. Let ¥ be the good stratification of X induced by f and suppose that g is

tractable at the origin with respect to 7 relative to f.
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Remark 2.2.1. Notice that, in this setting, Xy g = X4 g. By definition, Xy g = Uy, cyXgly,.
Since g is tractable at the origin with respect to ¥ relative to f, for all strata
Vo =Win{f =0}W, € #,gly, has no critical points, except perhaps the origin. On the
other hand, X g N {f = 0} = {0} implies that Xg|y\ ( r—oy = Xg|w;, for all W; € #". Therefore,
Lyg=2Xyg.

Let us describe the stratification we will use in this section.

Lemma 2.2.2. (Second stratification lemma) Let 7 be the good stratification of X induced by
f, 77 the collection of strata of ¥ contained in {f = 0} and suppose that g is tractable at the

origin with respect to ¥ relative to f. Consider the refinement of 7,
V"' ={Vi\{g=0},Vin{g =0} \Zyg,ViNZyg,Vi € ¥} U{0}. (2.3)
Then ¥ is a good stratification of X relative to g such that ¥/ 1/=0},
VU = vin{f =03\ {g =0} Vin{f = 0} N {g =0} \Eyg. Vi € ¥} U{0},

is a good stratification of X/ relative to g|y /.

Moreover, f is prepolar at the origin with respect to ¥ relative to g.
Proof. Let us first show that ¥ is a good stratification of X with respect to g.

1. V(g) is a union of strata of type V;N{g =0} \ Xy g and V;N Xy g;

2. Let us show that

{Vi\{g=0},Vie v} ={Win{f=0}\{g=0},Wi\ ({f =0}u{g=0}),Wie #}

is a Whitney stratification of X \ {g = 0}. Since f has an isolated singularity at the origin,
{f = 0} intersects each strata W; transversely. Therefore, since #  is a Whitney stratifica-
tion of X, {V;\ {g =0}, V; € ¥’} satisfies Whitney’s condition (b).

3. Let us verify the Thom condition. Let V) € V(g),Vy C V(g) be strata of ¥ and let (py)
be a sequence of points of V converging to a point p € V,. Suppose that the sequence
of tangent spaces T,V (g|v, — g|v, (pi)) converges to T. We must show that 7,,V,, C T If
p =0, then V) = {0} and {0} = T,V,, C T. Suppose now that p # 0 and consider V =
WiNXyg,W; € # . Since Thom stratifications always exist, one may take a refinement of
W; N Xy g that guarantees that the Thom condition is valid over this strata. Since Xy g is
one-dimensional, this refinement would be given by taking off a finite number of points.
Therefore, working on a sufficiently small neighborhood of the origin, Thom condition
is verified over W;N Xy g. For p # 0, we have two options for V; ¢ V(g), which are
W\ ({f=0}U{g=0}) and W;n{f =0} \ {g =0}, where W; € .
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Suppose that V) = W;\ ({f =0} U{g =0}),W; € #, and let § be an analytic extension
of g to an open neighborhood of the origin in C". Then

klgrolcTPkV<g|V,1 _g|V/1 (pk)) = lim Tpkv(g|Wi\({f:0}U{g:0}) _g|Wi\({f:O}U{g:0}) (pk))

k—»oo
= lim 7,V (g~ &(pu)) NTp Wi

C ]}iilgoTka(g —&(pi)) ﬂ;}gﬁTpkWi

If peVy=V;N{g=0}\Xyg V;€ ¥ and writing limy_,.. T, W; = T1, since p Ly g,

the last limit is equal to
,V(E—-8p)NT =T,V (@) NT.
Suppose now that V, = W;N{g =0} \ ({f =0}UZyg),W; € # . Then
T,Vy=T,(Win{g =0} \({f =0} UZyg)) =T,W;NT,V(g).

By Whitney’s condition (a) over strata of %, T,W; C Tj. Since g is tractable at the origin
with respect to ¥ relative to f,7,V (g) intersects T,(W; \ { f = 0}) = T,W, transversely at
p & Xy g. Therefore, the intersection 7,V (§) NT; is transverse. Then we conclude that

klg]f}o T,V (glv, —&lv, (px)) =T,V (&) NTh.

Therefore,
T,Vy=T,W;,NT,V(g) CTiNT,V(g).

Now, let f be an analytic extension of f to the ambient space U of X. If
Vy=W;n{g=0}N{f=0}\Zyg.W;c 7,

TyVy=Tp(W;N{g =0} N{f =0}\Zyg) = T,W;NT,V(Z) NT,V(f).
Using Whitney’s condition (a) over strata of % again,
T,Vy=T,W;NT,V()NT,V(f) CTiNT,V(g).

Let us now analyze the case where V) = W;N{f=0}\{g=0},W, e #.
Then

lim 7,V (glv, —glv (p) = Tim T, V (gl r—op (g0} — &lwingr=op\(g=0} (P))
= lim 7,V (g = &(p)) N T, Wi N T,V (f)
€ lim T, V(3 &(p) O im T, Wi i T,V (7).

Notice that p must be contained in {f = 0}, since it is a point of the closure of
W, {f = 0}\ {g = 0},W; € #'. Therefore, the only option we have for Vj is
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Win{f=0}N{g=0}\Zyg W; € # . Then, writing limy_,., T, W; = Ti, the last limit

is equal to
T,V(E—&p)NTNT,V(f) =T,V (&) NTINT,V(f).
For Vy = W;N{g=0}N{f=0}\Zyg W€ ¥, we have
T,Vy = Ty(W; N {g = 010 L = 01\ Zyg) = LW, N T,V (@A TV (7).

Since f has an isolated singularity at the origin, 7,V ( f) intersects T,W; transversely and
since g is tractable at the origin with respect to ¥, T,V (g) intersects T,V (f) N T,W; trans-
versely. Since, by Whitney’s condition (a) over strata of %, T,W; C Ti, the intersections
on T,V (§) N Ty N T,V (f) are transverse. Then we conclude that

limy,e T,V (glv, — 8lv, (Pr)) = T,V (&) NTi NTV (f).
Using Whitney’s condition (a) over strata of # again,
T,V, =T,W;,NT,V(§)NT,V(f) CTiNT,V(&)NT,V(f).

Let us now verify that 7" (=0} is a good stratification of X/ relative to glys. This is
valid because

Y= = (Wi {f =01\ {g=0},Win{f=0}N{g =0} \Zyg,W;,c #}

is given by strata of ¥”.

At last, we will show that f is prepolar with respect to ¥ at the origin. For that, we need
verify that for all Vi, € #”,0 € Vg, flv,, is nonsingular. If Vo, = V;\ {g =0},V; € ¥, since f has an
isolated singularity at the origin, f |Vi\{g:0} has no singularity . Suppose now that Vo, =V,NXy g,
with V; € #. Since, by Proposition[I.8.4, X1y, C {f =0} and, by hypothesis, £,y gN{f =0} =
{0}, flv, is nonsingular. Now, let Vo, = V;N{g =0} \Zyg,V; € ¥ and x € Xf]y,,x # 0. Since
Xflv, C{f=0}Vi=W,n{f =0}, forsome W; € #. Thenx e W,n{f =0} N{g=0}\Zyg.
But g is tractable at the origin with respect to ¥ relative to f, which implies that W;n{f =0}
intersects {g = 0} transversely and gives us a contradiction. Therefore, f is prepolar at the origin
with respect to ¥ |

Let us see an adaptation of Theorem 3.9 of (MASSEY/, 1996)) to the case we are working

on. For that we will need the following property.

Lemma 2.2.3. Let K and F' be subspaces of a Hausdorff topological space X and f : K — F be

a continuous map. Suppose that K is compact. If A is a closed subset of K, then

Sl KOfHF = f(A)) = F = f(A)
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is a proper map.

Proof. Notice that f is proper. Let K’ be a compact subset of F. Since X is Hausdorff, K’ is
closed. Therefore, f~!(K’) is compact.

Let now K” be a compact subset of F — f(A). Since K is compact, F is Hausdorff and f
is a proper map, f is a closed map (see page 125, (ENGELKING, 1989)), which implies that
f(A) is closed in F. Then K is a compact subset of F. Since f is proper, f~!(K") is compact in
K—fY(f(A) = KN f~Y(F— f(A)). Therefore, f| is proper. [ |

Lemma 2.2.4. Let f,g: X — C be holomorphic functions and % be a Whitney stratification of
X. Suppose that f has an isolated singularity at the origin and let ¥ be the good stratification of
X induced by f. Suppose that g has a one-dimensional critical locus (with respect to #"), that g
is tractable at the origin with respect to ¥ relative to f and that £, gN{f =0} = {0}. Then, for
0 < |a] < |6| < € < 1 and a closed ball B centered at the origin,

x(Xng Ha)nf 1 (8)NBe) = x(XNg H(a)nf1(0)NBe).

Proof. Let

¥ ={Vi\{g=0},Vin{g =0} \Zyg,VinEyg,Vic ¥} U{0} (2.4)

be the good stratification of X relative to g constructed in Lemma [2.2.2] By this lemma, f is
prepolar at the origin with respect to #”. So, V(f) intersects each stratum of ¥ transversely in a
neighborhood of the origin, except perhaps at the origin itself. Hence, we can choose a sufficiently
small € such that in an open ball containing Be, V(f) intersects {Vy, NV (g) \ Xy g,V, € 7'}
transversely and such that the sphere dB; intersects each V3 NV (g) NV (f) transversely.

Fixing the appropriate €, let us show that, for 0 < n,v < g, the map

BeNXN® (int(Dy) x int(Dy) — @[ 4(¥V)UZyg))

b a=(r)
int(Dn) x int(Dy) — ®(Lr (V) Uy g)

is a stratified proper submersion with respect to #', where Dy, and Dy are small closed balls

centered at the origin.

Since X is Hausdorff, Be N X is compact and (f,g) is a continuous map, by Lemma [2.2.3]
(f,8) : BeNX — int(Dy) x int(Dy) is proper and so is the restriction ® defined above.

Let us prove that ® is a submersion. Since f has an isolated singularity at the origin and
the symmetric relative polar curve I’ r.¢(7) and the singular locus X, g were excluded, & has no

critical point inside int(Bg) N X.
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Let us now verify that ® has no critical points on the boundary dBe N X. Let f and g
be extensions of f and g to the ambient space, respectively. By contradiction, suppose that no
matter how small we pick 17, v, ® has a stratified critical point on the boundary d B N X. Since
the covering given by the stratification is locally finite, we can assume that all these critical
points lie in some stratum V; . Then there exists a sequence of critical points (p;) of dB: NV},

such that p; — p, f(pi;) =0, g(pi) — 0, and
Tpiv(f_ f(pz)) N Tpiv(g _<§<pi)) M TPiV/'L g TPiaB&"

Hence, pe Vg CVy, f(p) =0,p€Zygand p €T o(¥). Then V(f),V(g) and T,Vp

intersect transversely at p and
T,V (f = F(pi)) = T,V (f = F(0)) = T,V(f) and T,V (g — &(pi)) — T,V(§ —&(0)) = T,V (3).

Therefore, if we suppose that 7,,,V) — .7, applying the limit to

T,V (f = F(pi)) T,V (& —&(pi)) VT Va C T, 9Be,
we obtain that
T,V(/)NT,V(8)NT C T,0B.
By Whitney’s condition (a), T,Vg € 7, and then
T,V(/)NT,V(§) NT,Vg C T0Be,

which is a contradiction, since we choose & sufficiently small such that
V(g)NV(f)NVp intersects dBe transversely.

Hence, @ is a stratified proper submersion. By the Ehresmann Fibration Theorem, all

fibres are homeomorphic.

Notice that, since g is tractable at the origin with respect to 7" relative to f, ® has no

critical points contained in V (f), that is, ® has no critical points of the type (0, a), o # 0.

Then, for 0 < |&| < |8| < € < 1, with & being a regular value of g, the fibres ®~!(5, &)
and ®~!(0, ) are homeomorphic, that is,

x(XNg (a)nf1(8)NBe) = 2 (X Ng ' (@) N f~'(0) NBe).

Another property we will need is the following version of Lemma [I.2.2]in our setting.
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Lemma 2.2.5. Let f,g: X — C be holomorphic functions and 7 be a Whitney stratification of
X. Suppose that f has an isolated singularity at the origin and let ¥ be the good stratification
of X induced by f. Suppose that g has a one-dimensional critical locus (with respect to %),
that g is tractable at the origin with respect to ¥ relative to f and that £, gN{f =0} = {0}. If
0 < |8] < 1, then

Yyn(f-518N{g=0}NBe =Xy gN{f=06}N{g=0}NBe.

Proof. Let g and f be analytic extensions of g and f to the ambient space U.

Let pe Xygn{f=06}N{g=0}NBe and Vy the stratum of ¥ that contains p.
Then dpgly, = 0, and rk(dpg|v,,dyflv,) < 1. So, p is a critical point of 8lv,n{s=5}, that is,
P E€Zyn(r=5y8N{g =0} NBe.

Let us show that Xy r—5:18N{g =0} NBe CLygN{f=06}N{g=0}NBe.

Suppose that there exists in Ly y—r(p,)18 N {g = 0} N Be \ /g a sequence of points
(pi) converging to 0. Then, for all i, p; € T’y o(#) N {g =0} \Zyg. Since (p;) € {g =0} \Zy g,

each p; is a critical point of f|{,—oy\x,, - S0, by Proposition pi € {f =0}, for all i, which
is a contradiction. Therefore,

=518 18 =0}NBe =Ty gN{f=38}N{g=0}NBe.

If Vi,...,V, are the strata not contained in {f = 0}, we can write Yy g =
byU...Ub, as a union of branches b;, where b; C Vitj) for some i(j) € {1,...,q}, as we saw
before. Let § be a regular value of £,0 < || < 1, and f~1(8)Nb; = {x;,... Xiyy; }- For each
xg € f1(8) Nbj, let Dy, be the closed ball with center at xg and radius 0 < rg < 1. We
choose rg sufficiently small such that the balls D,, are pairwise disjoint and the union of balls
Dj=Dy U... UDxik(j) is contained in Be, where 0 < || < € < 1 and € is sufficiently small
such that the local Euler obstruction of X is constant on b; N Be. Notice that, in this case, we can
choose xg € bj,j € {1,...,r},0 € {i1,...,ix(j}, and write Eux (xg) = Eux(b;).

Before we prove the first theorem of this section, we will prove a useful regularity
condition over the branches b;. Notice that the next lemma is a version of Corollary in our

setting.

Lemma 2.2.6. Let 0 < || < 1 and 0 < |0| < 1 be regular values of g and f, respectively. For
all 0, £ 6,,0,,6, € {il,...,ik(j)}, and |a| < |6/,

x(XNg N (a)NfH(8)NDy ) = x(XNg™ (o) N f7(8) N Dy )-

Proof. Consider the function ¢ over b;\ {0} givenby @(x) = x(XN{g=o}N{f = f(x)} NDy),
where || < | f(x)| and Dy the closed ball with center at x and radius 0 < r,, < 1. We should
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prove that ¢ is constant. Since b; \ {0} is connected, it is sufficient to show that ¢ is locally
constant, that is, given x € b; \ {0}, there must exist a neighborhood V; of x such that for all
y€bi\{0}NVy, @(x) = @(y). It is enough to show that there exist & > 0 and a neighborhood
V, such that for all y € b;\ {0} NV, and all 0 < € < &,S(y,€) intersects g~ (0) N fF~1(f(y))

transversely.

Let us denote by N(¢€) the tube {z € U;d(Xyg,z) = €}. We can replace S(y,€) with
N(€) and we have to show that there exist € > 0 and a neighborhood V of x such that for all
y€b;j\{0}NV, and all € < &, N(¢) intersects g~'(0) N f~!(f(y)) transversely. We can also
replace the distance function to X, g with a real analytic function 4 such that 4~!(0) = X g and
h > 0. Then we replace the tube N(g) with {z € U;h(z) =€} = h~!(¢).

By contradiction, suppose that there exists a point y such that N(€) does not intersect
g 1 (0)N f~1(f(y)) transversely. Let V,, be the stratum of ¥ that contains y. Then, using the
terminology of Tomdin in (IOMDIN, 1974a)), since y € Vo,N{g = 0}, the vectors grad hly, (y) and

grad flv,(y) = (1/2f|v,(y))grad || f|v,(y)|| are complex linearly dependent mod grad g|v, (y).
Hence, grad f|v,(y) = Agrad h|y,(y),mod grad gy, (y).

Now,

grad || flv |F() = 2flv(0)grad flv,(y) = 2f v, (v)Agrad hlv,(y)

Aflve (v
M) (3)srad Bl (5) = varad v, | P,
hlve (¥)
with y = lhf‘v‘;“(g) The last equality means that the vectors grad || f|v,||*(y) and grad ||h|v,|*(y)

are complex linearly dependent mod grad gly, (y). This contradicts Corollary using
the functions ||Aly,||> and ||f|v,|[?, since 4 g N {f = 0} = {0}, this corollary implies that
there exist € > 0 and a neighborhood G of X, g in {g = 0} such that at points z of D¢ NG\
Yy g grad ||flv,||*(z) and grad ||hly,||?(z) are complex linearly independent mod grad gly,,(z).

Therefore, @ is locally constant. [ |

Remark 2.2.7. The last lemma shows that, for 0 < || < |8| < € < 1, the Euler characteristic
of XNg~ ()N f~1(8)NDy, is constant over b;NBe, j € {1,...,r} and 6 € {ij ... six(j) }- Then,
for each stratum Vj,...,V, of # not contained in {f = 0}, x(Ving ()N f~1(8) N Dy,) is
constant over b; N Bg. Notice that x(V;Ng~ 1 ()N f~1(8) ND,,) is also constant over b; N Be.
In fact, if V; is closed, there is nothing to do. Suppose that V; # V; and write V; = V; U (V; \ V;). By
definition of complex analytic stratification, V; \ V; is analytic and union of strata of ¥ of smaller

dimension,
V,=V;uV, U...uV,,.

For the stratum of smallest dimension, Vy = {0}, we have Vj = Vj. Reducing to the case
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V; = V;UW,;, with W; = W;, by additivity of the Euler characteristic,

x(Ving Y(a)nf 1 (8)NDy,) = x(Ving '(a)nf 1 (8)NDy,)
+ x(Wing (o) N f(8)NDyy).

Since both x(V;Ng ! (a) N f~1(8)NDy,) and x(Wing~ ()N f~1(8) N Dy,) are con-
stant on b; N Be, x(ViNg~ ' ()N f~1(8) N Dy,) is constant over b; N Be.

Let B : X — Z be a constructible function with respect to # . Using Remark [2.2.7, since
each b; is contained in one unique stratum of % and f3 is constant over each one of them, we

can use the following notation:

1. B(b;):=PB(xg), for achosen xg € bj;

2. B(bj)=x(Xng Y« o) N f1(8)NDyy, B) for j€{1,...,r} and 6 € {i1,..., ik }-

Theorem 2.2.8. Let 3 : X — Z be a constructible function with respect to the stratification .
For 0 < |a| < |§] < € < 1, we have

x(Xng H(a)nf ' (0)NBe,B) = x(Xﬂg*l( )ﬂf”(é)ﬂBe,ﬁ)
- meb —B())).
Proof. We have

x(XNg ' (0)nf1(8)NBe) =

= x(XNg ' (0)NfTH(8)NBe \UL D))+ x(XNg™ (0)Nf~1(8) N (U= Dy))

r

= x(XNg ' (0)NfH(8)NB\ Uiy D)) + ) x(X g™ (0)Nf~1(8)NDy).

j=1
For each j € {1,...,r}, as we saw before, D; = Dxi1 U.. -Dxik( ) where D, is a closed
J
ball with center at xg. Since f is an analytic function germ and, for each 6 € {il,...7ik( j)},

XNng'0)n f'(8) N Dy, is an analytic germ at xg, it is contractible. So,
x(XNg 1 0)Nf~1(8)NDy,) = 1. Therefore,

x(XNg H0)NfH(8)ND)) =myp,.

Hence,
x(XNg ' (0)nf(8)NBe) = x(XNg ' (0)Nsf~(8)NBe\ (U meb

On the other hand, we have
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x(XNg (a)nf1(8) N Be)

= x(xXng )N (8)NB AU D)+ x(X g~ (a)nf 1 (8) N (V)1 D))
= x(xng Na)ynf 1 (8)NB\U_Dj)+ Y x(Xng (a)n f~1(8)NDy).
j=1

Using again that D; = Dy, U.. .Dxik( )2 We can write
J

2Xng N a)nf'(8)nD)) = x(Xng (a)ns(8)n (YD)
(/)

= Y x(xng ' (a)nf(8)NDy,).
=1

By Lemma , forall 11,1 € {i1,...,ix(j)}

=

S

2(XNg ()N F71(8)N Dy, ) = 2 (X Ng~ (@) N f(8)NDy, ).
Hence, fixing 6 € {ij,... ,ik(j)}, we have that
k(j

)
x(XNg~(e)nf7(8)NDy,)
1

xXng Na)ynf'(8)ND)) =
q
= myppx(XNg ()N f71(8)NDy,)
and then

x(Xng (a)nf ' (8)NB:) = x(Xng '(a)nf ' (8)NBe\Uj_,D;)

+ Y mppx(Xng ()N f7(8)NDy,).
=1

By Lemma 2.2.5) Xy gnN{f =0}N{g =0} NBe = {x1,...,x5} is the set of critical
points of g|(s—_s1~p, appearing in {g = 0}. Then, since 0 < || < |6] < € < 1,

x(XNg ()N f1(8)NBe\ (Ui D)) = x(Xng ' (0)Nf(8)NBe\ (Uj—iD))).
Because (0, ) and (8, ) are regular values of (f,g), by Lemma[2.2.4]
x(XNg )N f1(0)NBe) = x(XNg (o) N f~1(8)NBe).
Then

x(XNg (@) NfH(0)NBe) = x(X g~ (a) N f1(8) NBe)
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r

= x(XNg ()N f7H(8)NBe\ (UjmyDj)) + Y mpp,x(XNg™ (@) N f~(8)NDy,)
=1

= 2 (XNg 0N F T (8) B\ (U D)) + Y mps 2(X Mg (@) f 7 (8)NDyy)

j=1
= 2xxXng N )N (8)NBe) = Y mpp, + Y mpp x(X0g 7 (@) f7(8) N Dy,)
=1 =1

= x(XNg ' (0)Nf1(8)NBe) — Z myp,(1=2(XNg™ (@) N1 (8)NDy,)).
j=1

By additivity of the constructible function 3, we obtain

x(Xng ()N (0)NBe, B) = x(XNg '(0)Nf'(5)NBe,B)

r

= Lomp(B()) —x(XNg ' (a)Nnf1(8)NDxy. B))

j=1
= x(xng ' (0)Nf~(8)NBe,B)

- imf,bj(ﬁ(bj) —B(b))).

Remark 2.2.9. If we suppose that g has an isolated singularity, we obtain that
Ly gN{f=0}=0and, in this case, the formula of Theorem is

x(XNg (@) N f1(0)NBe, B) = x(XNg~'(0)Nf~1(8) NBe, B),
which is the equality proved in Proposition 6.2 of (DUTERTRE; GRULHA, 2014).

Remark 2.2.10. Let 7 be a Whitney stratification of X and ¥ the good stratification of X
induced by f. Suppose that g is tractable at the origin with respect to ¥ relative to f, Ly g
is one-dimensional and that £, g N {f = 0} = {0}. The refinement ¥’ of ¥, constructed in
Lemma , is a good stratification of X relative to f, such that ¥’ {8=0} s a good stratification
of X8 relative to f|x¢. On the other hand, the refinement #’ " of ¥, constructed in Lemma
is a good stratification of X relative to g such that ¥ {/=0} is a good stratification of X/ relative
to g|ys. But, in fact, ¥ " is also a refinement of ¥”’. Therefore, in this context, we can refine a
Whitney stratification of X to obtain an appropriate stratification for which the Brasselet numbers

By x(0),Byx2(0), B, x(0) and B, x/(0) can be explicitly calculated.

Applying the previous theorem to the case where § = Euyx, we can compare B, x 7(0)
and B xs (0).

Corollary 2.2.11. Let # be a Whitney stratification of X and ¥ the good stratification of X
induced by f. Suppose that g is tractable at the origin with respect to ¥ relative to f. Then, for
I« |f|lxex,
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B, xr(0) =By x<(0) = Xy mgp;(Euxs(bj) — By xrp-1(5)(D)))-
Proof. Applying Theorem to B = Euy, we obtain

2(Xng ()N /1 (0)NBe,Euy) = X(Xﬂg_l( )Nf~"(8) NBe, Eux)

— Zlmfb Eux(b) EMX(b]))

To compute x (X Ng~!(a) N f~1(0) N B, Eux) we will use strata of the refinement #"
of 7 not contained in {g = 0}. Let Wi, ..., W, be these strata. Since g is tractable at the origin
with respect to ¥ relative to f, by Lemma[2.2.2] f is prepolar a the origin with respect to #”,
that is, { f = 0} intersects each W; transversely, fori € {1,...,t}. So, Eux(W;) = Euy(S), for
each connected component S of Wl-f . Then, for 0 < |a| < € < 1,

xXNf ) ng Na)NBe, Eux) = Y x(Winf~'(0)ng™" () NBe)Eux (W;)

MN

1

= Y Y xsnr0)ng (o) NBe)Euyy(S)

i=1 S8
Bg7xf (0).

~.
~

To compute x (X Ng~'(0)N f~1(8) N Be, Eux) we will use strata of the refinement %"
of ¥ not contained in { f = 0}. Then, using Equation (2.2) of Theorem with the notation

above, we have that

x(XNg 1 (0)Nf7(8) NBe, Eux) = By.xs(0) + Xy myp, (Eux (bj) — Euxs(b;)).

We will now compute Eux (b;) = x(X Ng~ (o) N f~1(8) N Dy,,Eux), where, as we
describe before, Dy, C Be,j € {1,...,7},0 € {i1,...,i(j)}, is the closed ball with center at
xg € f1(8)Nb ; and radius 0 < r; < 1. For that computation we will use strata of #” not
contained in {f = 0} or in {g = 0}, that is

MA\{f=0yU{g=0},.... W\ {f =0} U{g =0}, Wi e /}.

Since f is prepolar at the origin with respect to #”, f~!(§) intersects each stratum
Wi\ {f =0}U{g =0} transversely and for all W;\ {f =0} U{g =0},

Eux(Wi\{f =0}U{g =0}) = Euyqp1(5)(W; \ {f =0} U{g =0} nf~(3)).
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So, writing W; \ {f =0} U{g =0} =U;,,

x(XNg (@) NS (8)NDxy, Eux) = Y x(Uing™ (o) N f~'(8) N Dyy) Eux (Uy)

e

~
—_

|
e

x(Uing ()N f~1(8) NDyy)Ettyy 115y (UiN £ (8))

i=1

= B, xnp1(5)(x0)

= By xnr15)(0)),

where the last equality holds by Remark [2.2.7]

Therefore,
B,xs(0) = x(Xng '(0)nf ' (8)NBe,Euy)

Y g (Bux(by) — 1(X Ng~ (@) 111 (8) N Dey. Euy)

=1
= Bﬁxg +meb Eux(b) Equ meb Eux(b> Bg7Xﬂf’1(5)(bj))
Jj=1 j=1
= Byxs(0)— Z myp (Euxs(bj) — By xnr-1(5)(b)))-
=1

Remark 2.2.12. If g has an isolated singularity at the origin, then £, gN{f =0} =0. So, in
this case, the formula of Corollary [2.2.T1]is given by

By xs (0) = Bg7xf (0),
which is the equality proved in Corollary 6.3 of (DUTERTRE; GRULHA| 2014).

Since a generic linear form / over C”" has an isolated singularity, we can consider the
good stratification ¥ of X induced by / and by Lemma2.1.4} X,y g N {l =0} = {0}. So, the
construction made in Lemma can be done in the case where f is a generic linear form.

Applying Corollary [2.2.TT]to this case, we obtain the following consequence.

Corollary 2.2.13. Let [ : C" — C be a generic linear form and 7 the good stratification of
X induced by /. Suppose that g is tractable at the origin with respect to ¥ relative to [. If
H = 17'(0), we have that

Be xnw (0) = Euxs(0) — Xy mp (Euxs(bj) — By xry-1(5)(b)))-
Proof. Applying Corollary 2.2.T1|to f = [, we obtain

B, x1(0) = By xs( Z J(Euxe(bj) =By xoy-1(5)(b))- (2.5)
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Since B; xs(0) = Euxz(0) and H = [~'(0), Equation (2.5) can be written as
Bg,XﬂH<O Euxg Z El/txg Bg,Xﬁl*1(5)(bJ’))‘

Remark 2.2.14. Notice that, by Theorem 5.1 of (DUTERTRE; GRULHA, [2014), B, x~x (0)
does not depend on H = [~1(0), so the sum of Brasselet numbers Y i—1mp By xry-1(5) (b)) does

not depend on the the generic linear form /.

Remark 2.2.15. If g has an isolated singularity, then £, g N {l = 6} = 0. So, in this case, the
formula of Corollary [2.2.13]is given by

Bg7XﬂH (0) = Euxg (0),

which is the equality proved in Corollary 6.6 of (DUTERTRE; GRULHA| 2014).

Remark 2.2.16. If / is a generic linear form over C", [~ !(8) intersects X N {g = 0} transversely

and then
Euxs(bj) = Euyry-1(5)(bj N7 (8)) = By xry-1(8)r.(b; N1 (8)),

where the last equality is justified by Corollary 6.6 of (DUTERTRE; GRULHA| 2014)) and L is a
generic hyperplane in C" passing through xg € [71(8)Nb;,j€ {1,...,r} and 0 € {iy,... k() )

Denoting By, xy-1(5)r.(bj N1~ (8)) by B’ the formula obtained in [2.2.13

g,Xﬂl’l (5) (b])7

can be written as

Bg’XﬂH(O) = Euxs (O) - Z;’:l mbj(B;,’Xm[fl(g) (bj) _Bg,Xﬂl*I((S) (bj))

This result allows us to compare the Brasselet number B, x~y(0) and the Euler obstruc-

tion Euys(0) in terms of the dimension of the analytic complex space (X,0).

Let Io(X/, F%X) be the intersection multiplicity of X/ and F(} o where F%X is the general

relative polar curve of f (see (LE; TEISSIER, |1981)). By Corollary :1.8.31[, if d = dim(X), then

By x(0) = Brxru(0) = (=1)* (X7, T, ). (2.6)

Corollary 2.2.17. Let [ : C" — C be a generic linear form, 7" the good stratification of X induced
by I and H = [~'(0). Suppose that g is tractable at the origin with respect to 7. Then:

1. If d is even, By xnw (0) > Euxs(0);

2. Ifdis Odd, Bg,XﬂH(O) < Euxg (0)
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Proof. For 0 < |§| < € < | and a generic linear form / defined over X, we apply Formula (2.6)
to the space X NI~1(8), whose dimension is d — 1. We fix a point x¢ € [~1(8) Nb;, for each
je{l,...,r},0 €{iy,..., Ik( j)} and we calculate the difference of Brasselet numbers around

the singular point xg. We have

By xru-1(8)(¥0) = By yry-1(5)(x0) = (=D 2L (X NI1(8))8,T0 )-

8l (8)

By Remark [2.2.16],
Bg7XﬂH(O) — Euxzs (O) = Z;:] mp; (Bg,Xﬂl*I(S) (xe) _B;,,Xﬂl—l((g) (xe))-

Hence,

1. Ifdiseven, By xnm (0) — Euxs(0) = ¥ mp, (Bg xry-1(5)(¥0) _ng,Xﬂl*I (6) (xg)) >0, that
18, Bg7me (0) > Fuxe (0);

2. If d is odd, Bg,XﬂH(O) — Euys (0) = Zr':l mbj (Bg,Xﬂl*I(E) (X@) _Bg,Xﬂl*I(S) (XQ)) < 0, that
s, Bg,XﬂH(O) < Euyxs (0)

If g : C" — C has an isolated singularity at the origin, Lé and Teissier proved, in (LE;
TEISSIER, [1981), that, for 0 < |ot| < € < 1, Euxs(0) = x(g~ ' (o) N H N B, ), where X = C",
H is a generic hyperplane and « is a regular value of g. The next result is a generalization of this

result to our setting.

Let [ be a generic linear form over C", {C"\ {0},{0}} a Whitney stratification of C"
and {C"\ {l =0},{l = 0},{0}} the good stratification of C" induced by /. Consider a point
xg € {l =06} Nbj, foreach j € {1,...,r},0 € {i1,...,ixj)} and let Dy, the closed ball with
center at xg and radius r;,0 < |a| < || < r; < € < 1, sufficiently small such that the balls Dy,
are pairwise disjoint and the union of balls D; = Dy, U...U Dxik(j) is contained in B, where
0<Pdlxexl.

Corollary 2.2.18. Let H = [~(0) be a generic hyperplane through the origin and suppose that
g is tractable at the origin with respect to the good stratification of C", {C"\ {Il = 0},{l = 0}},
induced by /. Then, for xg € {{ =6}Nbj, j€{1,...,r},0 € {i1,...,ixj)}, chosen as before,

Euge1(0) = x(g (o) NHNBe) + X5y (= 1)" 'y, (1 (gli-1(5),%0) + 1 (gl1-1(5),%6))-
Proof. Applying Remark [2.2.16] we obtain

Beri(0) = Eugy—0}(0) = Xy mp;(Bg 11 (5)n(x6) — By 1-115)(Xe)),
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where L is a generic hyperplane in C" passing through xg. Using the definition of the Brasselet

number, we have

Ben(0) = x(HNg '(a)NBe)
B, 15 (xe) = x(g Hoyni'(8 )ﬂDxG):1—|—(—1)”_2u(g|171(5),x9)
By -iiyre(*e) = 2(g7 ()NI71(8)NLNDyy) = 14 (—=1)" 1 (gli-1 5y, %0)
= 14+ (=1)"u'(gli-115),%0)-
Therefore,
-1 _ . n—3,,/ n—2
x(g ' (@)NHNBe) = Eugeo1(0) = Y my, ((=1)" 1 (gl-115),%0) — (= 1)"*pa(gl;-1(5),%0))
Jj=1
. n—3 !
= Eugey(0) = Y (=1)"my, (1 (gl1-1(5),%0) + 1(2l-1(5):%a))
=1
= Euge_0y(0)—(-1)"" lzmb "(gli-1(5):x0) + 1(8li-1(5):%6))-
Hence,
Euge01(0) = x(¢ (o) NHNBe) + (= 1)" " Xy my, (1 (8l1-1(5),%0) + H(8-1(5):%a))-
[ |

Remark 2.2.19. Using the previous corollary,

Eux:(0) — x(g~' (&) NH N B) using the dimension of C".

1. If nis even,

Euxs(0) — x(g (@) NHNB) = (—1)" 1Z:mb "(gli-1(5
So, Euxs(0) < (¢~ (a) NHNBe).

2. If nis odd,
Euxs(0) = x(¢~' () NHNBg) = (—1)"" 1Zmb "(8li1(5
So, Euy:(0) = x (g~ (@) NHNBy).

Let 7 = {{0},W1...,

we can compare

the difference

)sX0) + 1(8l-1(5),%0)) <0

) Xo) + 1(gli-1(5),%0)) = 0

W,} be a Whitney stratification of X, 7 the good stratifica-

tion of X induced by f, 7’ the good stratification of X relative to f obtained as a refine-
ment of ¥ in Lemma and 7" the good stratification of X relative to g obtained as

a refinement of ¥ in Lemma Suppose that £, gN{f =0} = {0}. Let T1,...,

T, be
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the strata of ¥ not contained in {g = 0} and Vj,...,V, the strata of #’ not contained in
{f = 0}. Let ny (resp. m,) be the number of stratified Morse critical points of a Morsification of
f:Xnga)nB: — C (resp. g : XN f (8 NB: — C) appearing on
T,Nng Ya)N{f #0}NBe (resp. VN f~1(8)N{g # 0} N Be), where 0 < |§] < 1 is a reg-
ular value of f and 0 < || < 1 is a regular value of g. We write £, g as a union of branches
biU...Ub,, where b; C Vy(), fori(j) € {1,...,q}. Suppose that { f = 6} Nb; = {x;,,...,x; , }.
For each 0 € {iy,...,iyj)}, let Dy, be the closed ball with center at xg and radius r;,0 < |ot| <
0] < 1 < € < 1, sufficiently small for the balls D, to be pairwise disjoint and the union of
balls Dj =Dy, U... UD’%(;) to be contained in B, where 0 < |8]| < € < 1, and € is sufficiently
small such that the local Euler obstruction of X at a point of b; N B is constant.

Theorem 2.2.20. Let B : X — 7Z be a constructible function with respect to % and suppose that
g is tractable at the origin with respect to ¥ relative to f. For 0 <| a |<] § |< € < 1,

. X<Xﬂg_1( )ﬂBg,ﬁ) (Xﬂf_](5)ﬁB£,B): ~
7 o (—D)In Ty (T;, B) — L (—1)3mVe— mm(Vnﬁ)—Z;zlm_ﬂbj([i(bj)_ﬁ(bj))_

Proof. By Lemma [2.2.2] since g is tractable at the origin with respect to 7 relative to f and
Yy gn{f=0}={0}, fis prepolar at the origin with respect to ¥ and, therefore, tractable at
the origin with respect to " relative to g. By Theorem|[1.8.23]

2(XNg ()N BesB) - 2(X Ng (@) N F ' (0)NBerB) = Y (1) T e (T, B).
s=0

Since g is tractable at the origin with respect to 7 relative to f, also by Theorem [1.8.23]

XX (8)NBeB) — 2(X g (O S (8)NBef) = Y (—D)™ (v, B).

t=0
By Theorem [2.2.§]
x(XNg N (a)nf ' 0)NBe,B) = x(XNg ' (0)Nf 1 (8)NBe, B meb — B (b))

which gives that

x(XNg Ha)NBe,B)—x(XNf1(8)NBe,B)
= x(Xng ' (a)nf'(0)NBe, B) — x(XNg ' (0)Nf(8)NBe,B)

; f(—l)dimff-lnmm,ﬁ)—i(—l)dimvf—lm,nm,ﬁ)

s=0 t=0

= x(Xng ' 0)nf ' (8)NBe,B meb —B()))

9 .
— 2x(Xng ' (0)nf 1 (8)NBe, B Z DB (T, B) = Y (= D™ \min (V;, B))

s=0 t=0

_ i(—l)dimff—lnsnm,ﬁ)—f(—l)@“mvf mn(Vi, B szb By,

s=0 t=0
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Remark 2.2.21. If g has an isolated singularity and 7 is a Whitney stratification of X, the
stratification ¥ obtained in Lemma [2.1.1]is equal to the good stratification ¥ of X induced by
f and the good stratification ¥ obtained in Lemma[2.2.2]is equal to the good stratification of
X induced by g. Therefore, keeping the notation 77, ..., T, for the strata of ¥ not contained in
{g=0}and Vy,...,V, for the strata of ¥ not contained in { f = 0}, we obtain that T; = W; \ {g =
0} and V; =W\ {f =0},W, € #,foralli € {1,...,q}. Nevertheless, X gN{f =8} = 0. So,
in this case, the formula of Theorem [2.2.20]is given by

x(XNf (@) NBe, B) — x(XNg~'(8)NBe, B) = LI (=)™ Wi~ (n; — mi)n (W;, B),
which is the formula proved in Theorem[I.8.28]

If we apply Theorem [2.2.20| to the case where B = Euyx, we obtain the following

consequence.

Corollary 2.2.22. Suppose that g is tractable at the origin with respect to ¥ relative to f. For
0 < || < |0] < € < 1, in the setting of the previous statement,

By x(0) =By x(0) = (_l)d_l (Mreg — Myeg) — Z§=1 mgp; (Eux(bj) — B¢ xn{f=6} (b)),
where n,., = n, and m,,, = my in the previous notation.

Proof. First we have 1(7y,Eux) = 0, for s € {1,...,q — 1}, n(V;,Eux) = 0, for
te{l,...,q — 1}, where V; € ¥’ are the strata not contained in {f =0} and Ty € ¥ are the

strata not contained in {g = 0}. Also, since the local Euler obstruction is constant over b; N Bg,

we can write Eux(xg) = Eux(b;) and, by Lemma 2.2.6, B, xn(7—5}(X6) = By xn{s=5}(b}),
0 € {i1,...,ix(j)}- Therefore, we have the formula.

|
Remark 2.2.23. If g has an isolated singularity, this last formula is given by
Bg7X (O) - B_ﬂX (O) = (_ 1)d71 (”reg - mreg)7

which is the formula proved in Corollary

In Corollary (1.8.32} the authors showed that if f has an isolated singularity and [ is
a generic linear form, then, denoting I';;(V;) = F;I‘.N where V, is the top stratum of the good

stratification of X induced by f,

w/ (04 ) —u!(TF)) = (=1)?Euyx (0) = (=1)*"1(Byx(0) — Eux(0)),
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where u/(T's;(V,)) and u'(T's,(V,)) are defined as in Remark 1.8.14

In the following, we use Corollary [2.2.22]to present a generalization of this result to a

function-germ g : X — C with a one-dimensional critical locus.

Corollary 2.2.24. Let [ be a generic linear form over X and ¥ the good stratification of X
induced by /. If g is tractable at the origin with respect to ¥ relative to [, then

HE(TE ) = (T8 ) = (= 1) By (0) — Eux (0) + Xy my, (Eux (b) ~ By xra=sy (b)) -
Proof. Applying Corollary|2.2.22|to f = [, we obtain

Bex(0)—B1x(0) = (_l)d_l (Mreg — Mreg) — Z My, (Eux(bj)— B, xn{1=5} (). 2.7)
=1

By Proposition [1.8.16|of (MASSEY|,|1996), / is decent with respect to ¥ relative to g
and g is decent with respect to ¥ relative to /. Then, we can replace n,., with ué (Fg l) and Mg
with p!(TY ). Also, By x (0) = Eux (0). Hence, Formula (2.7) is given by

Byx(0) = Eux(0) = (=1)*(u#(I ) — u'(TF ) = Loy mp; (Eux (b)) — By xrni=5 (),

that is,

By x(0) — Eux (0) + Xy mp, (Eux (bj) — By xngi=5y (b)) = (1)~ (u8 (7 ) — p!(T5 )
Hence,
ps(rg ) —pl(ry ) = (=n*! (B&X(O) — Eux (0) +X— mp,(Eux (b)) _Bg,Xm{I:S}(bj))> :

Using the last two results, we obtain another way to calculate the Brasselet number
Bg7X (0) *

Proposition 2.2.25. Let [ be a generic linear form over X and 7 the good stratification of X
induced by /. Suppose that g is tractable at the origin with respect to ¥ relative to /. Then, for
0<|f|lxex,

Bg-,X(O) = (_1)d71nreg +E”X8(O) - Z;‘:l mp; (EMX8<bj) _Bg,Xﬂ{l:5} (bj))a

where n, is the number of stratified Morse critical points of the Morsification of
1:XNg '(8)NBe — C appearing on X,e Mg~ 1 (8)N{l # 0} NBe.

Proof. Applying Corollary [2.2.22|to the case where f is the generic linear form /,
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Bg,X(O) _BZ,X(O) = (_l)d_l(nreg - mreg) - Z;‘:l mbj (EMX(b]) _Bg,Xﬂ{l=5}(bj))'

Since B; x(0) = Eux(0), this means that

Bg,X(O) = (—1)d71(nreg mrgg —|—Eux Z Eux Bg,Xﬂ{l:S}(bj»- (2.8)

But, by Corollary 2.1.5]
Eux(0) — Euxs(0) — Z;‘:l mbj(EuX(bj) —Euys(bj)) = (—l)d_lmreg,
that is,

Eux(0)— Y my Eux (b;) = (—=1)* 'y + Euxe(0) — Y. my Euxs(b)). (2.9)
j=1 j=1

So, using equations (2.8)) and (2.9), we obtain that,

Bg,X(O) = (_l)d_l(nreg_mreg)+EuX(0)_ZmbjEuX +ZBgXﬂ{l 5}( )

J=1 j=1
= (—l)d’l(nreg — Myeg) + (—l)dflmreg + Euxs(0) — Z mbjEqu(bj)
j=1

+ Y Bexnp=sy(b))

=

= (=) g+ Euxs (0) = Y my; (Euxs (b)) — By x5} (b;)).
j=1

Corollary 2.2.26. Let [ be a generic linear form over X and 7 the good stratification of X
induced by /. Suppose that g is tractable at the origin with respect to # relative to /. Then, for
0<|f|lxexl,

BgaX(O) = (_1)d—1nr€g + Euxe (0) - Z;:l mp; (B;Xmlfl(g) (b]) _Bg,Xﬂl*I(S) (bj))a

where n,, 1s the number of stratified Morse critical points of the Morsification of
1:XNg '(8)NBe — C appearing on X, Mg~ 1 (8)N{l # 0} NBe.

Proof. We have the formula since, by Remark [2.2.16, Euys(b;) = Big,xmzfl(ﬁ)(bj)'

Remark 2.2.27. Let / be a generic linear form over X and 7 the good stratification of X induced
by . Suppose that g is tractable at the origin with respect to # relative to [ and let H = [~ (0).
By Theorem 1.8.25} (—1)?" 1,0 = B¢ x(0) — By xrw (0). Using this equality in the formula
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Bg,X(O) = (- 1)d_1”reg + Euxs(0) — Z;:l mp; (B;’Xﬂlfl(g) (bj) - Bg,Xﬂl’1(5) (bj))v
we obtain
By xn#(0) = Euxe(0) = Ximy my; (B, x5 (b)) = By xru-1(5) (b)),

which is the formula obtained in Remark
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CHAPTER

LE-IOMDIN FORMULA FOR THE BRASSELET
NUMBER

The Milnor number is a very useful invariant associated to a complex function f with
isolated singularity defined over an open neighborhood of the origin in CV. It gives numer-
ical information about the local topology of the hypersurface V(f) and computes the Euler

characteristic of the Milnor fibre of f at the origin.

If we consider a function with a one-dimensional critical set defined over an open subset
of C" and a generic linear form / over C", lomdin gave an algebraic proof (Theorem 3.2), in
(IOMDIN, [1974a), of a relation between the Euler characteristic of the Milnor fibre of f and the
Euler characteristic of the Milnor fibre of f+IV,N > 1 and N € N, using properties of algebraic
sets with one-dimensional critical locus. In (LE, [1980), Lé proved (Theorem 2.2.2) this same
relation in a more geometric approach and with a way to obtain the Milnor fibre of f by attaching

a certain number of n-cells to the Milnor fibre of f |{1:0}~

In (MASSEY| 2003), Massey worked with a function f with critical locus of higher
dimension defined over a nonsingular space and defined the L& numbers and cycles, which
provides a way to numerically describe the Milnor fibre of this function with nonisolated
singularity. Massey compared (Theorem I1.4.5), using appropriate coordinates, the L& numbers
of f and f+IV, where [ is a generic linear form over C" and N is sufficiently large, obtaining
a Lé-lomdin type relation between these numbers. He also gave (Theorem 11.3.3 ) a handle
decomposition of the Milnor fibre of f, where the number of attached cells is some L& number.
Massey extended the concept of L& numbers to the case of functions with nonisolated singularities
defined over complex analytic spaces, introducing the Lé-Vogel cycles, and proved the Lé-Ilomdin-

Vogel formulas: the generalization of the Lé-lomdin formulas in this more general sense.

The Brasselet number also describes the local topological behavior of a function with

nonisolated singularities defined over an arbitrarily singular analytic space. The Lé-lomdin
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formula for the Brasselet number follows from (BRASSELET et al.l [2004), with an algebraic

approach, using Lé-Vogel-cycles and vanishing cycles.

In this chapter we provide a new proof for this formula, with a topological approach, in
the case of an analytic function g with a one-dimensional critical set and defined over an analytic

complex space.

3.1 Classical Lé-lomdin formulas

In this section we present formulas proved by Iomdin, L& and Massey.

Let (Y*,0) be a complete intersection germ with isolated singularity at the origin of

codimension k — 1 defined in (Cn,()) by f1 =+ = fr_1 = 0,U be an open subset of C",
g: (U,0) — (C,0) an analytic function-germ and (¥, 0) be a complete intersection germ defined
by fi = - = fr_1 = g = 0. Let S¢ be a sphere with center at 0 and radius €, dY; =Y NS, the

link associated to (¥,0) and dY;" = Y* NS, the one associated to (Y*,0). Let € > 0 be sufficiently
small and define & (0) : Yy — V (k,n), where V (k,n) is the manifold of orthonormal k-planes
in C", the map that associates to each z € dY, the k-plane obtained by the orthonormalization
of Gram-Schmidt of (grad fi(z),...,grad fi_1(z),grad g(z)).

We begin with the Lé and lomdin’s theorem and we follow the notation used by L& in
(LE, 1980). Suppose that Y* \ 'Y is nonsingular and that g has a one-dimensional critical set
Yg C (Y,0) . Let be a generic linear form over U. If (zy,...,z,) are the local coordinates of C"
in U, without loss of generality, we can suppose that [ = z;. We consider a decomposition of Xg

into branches I',,.

Theorem 3.1.1. (Theorem 2.2.2 (LE, 1980)) Let F be the Milnor fibre at O of the restriction of
gto (Y*,0). If N is an integer sufficiently large, then

X(F) = x(Fy) =N} ny8(&(xi(1))),

where Fy 1s the Milnor fibre of the restriction of g —|—211V to (Y*,0),n, is the degree of the restriction
of z; to the branch T, of £g,x;(¢) is a singular point on ', Nz; ' (¢), 8 (& (x;(t)) is the degree
of the map & (x:(¢)) : d(Y* Nz ' (t)e — V(k,n), with d(Y* Nz ' (1)e = Y Nz ' (1) N Se(xi(2)),

Se(x;i(2)) is a sphere with center at x;(¢) and a sufficiently small radius €.

Let us now see the Lé-Iomdin formula proved by Massey. We present here the case for
functions defined over a nonsingular subspace of C", and we recommend Part I of (MASSEY|
2003) for the general case. Let 4 : (U,0) C (C*,0) — (C,0) be an analytic function such that its
critical locus X4 is a s-dimensional set. We will need some auxiliary concepts before we see the

definition of L& numbers.
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Definition 3.1.2. For 0 < k < n, the k-th relative polar variety Fﬁ . of h with respect to z is the
scheme (see page 118, (MANIN| [2018))

dh dh
V| =—,....— | /Zh
(azk7 ’&Zn>/ )

where z = (z1,...,2,) are fixed local coordinates.

Also, the k-th polar cycle of / with respect to z is the analytic cycle [F]fi,z]'

Remark 3.1.3. If fi,..., f, are holomorphic function germs in C**! and Y is an irreducible com-
ponent of V(fi,...,f,), then dim(Y) > dim(C""') —r = n+ 1 —r. So, since F’;lz =
V(aa—z};, ey a%h) /Zh, each irreducible component of I . has dimension, at least,

n+l1—(n—k+1)==k.

Definition 3.1.4. For 0 < k < n, the k-th Lé cycle [A’;l Z] of h with respect to z is the difference
k+1 Jh k

of cycles [Fh’z ﬂV(&—Zk)] =[]

Definition 3.1.5. The k-th LLé number of % in p with respect to z, l,’f .» 18 the intersection number

(A];LZ.V(Z() — P05 3k—1 _pk—l))P7

provided this intersection is purely zero-dimensional at p.

If this intersection is not purely zero-dimensional, the k-th L& number of & at p with

respect to z is said to be undefined.

Example 3.1.6. (Example I1.1.10 of (MASSEY/, 2003)))

Consider the Whitney umbrella given by /& = y> — x> —tx? and fix the coordinate system
z=(t,x,).

We have £h = V ({—x?, —3x> — 2tx,2y)) = V(x,y), that is, the singular locus of % is the
t-axis. Now, V (%, %) = {x=y=0}U{-3x*> -2t =y =0}. Hence, l“,lhZ =V (-3x>—2t,y).

Also, V (3—@ =V(y) and l"iz =V(y).

By the definition of L& cycles, A} , = [F%.Z nv (%)} — [}, ] = [V (y,x)], which is the
t-axis. Therefore, the underlying space of A}LZ is the 7-axis and this component occurs with

multiplicity 1. The O-th L€ cyle, on the other hand, is given by

M= [thenv ()| - I =2 o) =200.0.0)

Hence, the underlying space of Ag . 1s the origin, with multiplicity 2.

We can now compute the Lé numbers:

e = Ay Jo=2and A, = (A ..V (1))o = (V(3,x)-V (1))o =1
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Corollary 3.1.7. (Corollary 1.19 (MASSEY/2003)) Let k > 0. Suppose that X4 is a s-dimensional
set. Then the Lé numbers A/ .(p) is defined for 0 <i < k.

If 5 is the dimension of XA and A; (p) exists, an interesting characterization for this
number, given by Massey (page 49), in (MASSEY), 2003), is the following:

)“}iz(p) = va.uw

where v runs over all s-dimensional components of Xk at p,n, is the local degree of the map

(zo,...,25—1) restricted to v at p and y, is the generic transverse Milnor number.

We still need one more definition before we state the Lé-Iomdin formulas.

Definition 3.1.8. Suppose that I" }Z_ZO is purely one-dimensional at the origin. Let ) be an irre-
ducible component of F}LZO (with its reduced structure) such that 1NV (zo) is zero-dimensional at

the origin. The polar ratio of 1 (for /4 at O with respect to zg) is the ratio of intersection numbers

(n.V(h))o
(n-V(z0))o
1.

.If 1 NV(zp) is not zero-dimensional at the origin, then the polar ratio of 1 is equal to

A polar ratio (of / at 0 with respect to zp) is any one of the polar ratios of any component of the

polar curve.

We are now ready to state the L.é- lomdin formulas for Lé numbers.

Theorem 3.1.9. (Theorem I1.4.5 of (MASSEY|, 2003)) Let j > 2, h: (U,0) C (C",0) — (C,0)
be an analytic function, and s > 1 the dimension of X4 in 0. Let z = (2o, .. .,z,) be a linear choice
of coordinates such that ),;; .(0) is defined for all i <'s. Let a be a nonzero complex number, and

let us consider the coordinates 7 = (zy, .. .,zn,20) to define the L& numbers associated to & + azg.

If j is greater than the maximum polar ratio for 4 then, for all complex number a,
X(h+ azé) =XhNV(zp) as germs of sets at 0,dimoX(h+ azé) =5— 1’)Lé+azé,2(0) exists for all
i<s—1,and
Ay 0) =2 (0) + (j = 1) (0),

h+a26,2
and, for 1 <i<s-—1,
A (0)=(—1)A,:'(0).

h-taz),z

3.2 Local topology of a deformation of a function-germ
with one-dimensional critical set

Let f,g: (X,0) — (C,0) be complex analytic function-germs such that f has an isolated
singularity at the origin. Let % be the Whitney stratification of X and ¥ the good stratification
of X induced by f. Suppose that £, g is one-dimensional and that X, g N {f = 0} = {0}.
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In this section we study the local topology of the deformation g of g given by g = g+ f,
where N > 1 is a positive integer number. We begin with a discussion about the singular locus
of g and a description of the appropriate stratification with which we can compute explicitly the

Brasselet numbers we will use.

By First stratification lemma (Lemma |2 , if 7/ denotes the set of strata of ¥
contained in {f = 0},

V' ={V\Zyg,VinZygVic V}u¥/

is a good stratification of X relative to f, such that ¥’ {s=0} i a good stratification of X relative
to f|xs. In this whole section, we will use this good stratification of X relative to f. Suppose that

g is tractable at the origin with respect to 7.

Proposition 3.2.1. For a sufficiently large N, g has an isolated singularity at the origin with
respect to the Whitney stratification # of X.

Proof. Let x be a critical point of g, U, be a neighborhood of x and G and F be analytic extensions

of g and f to Uy, respectively. If V(x) is a stratum of % containing x # 0,

dxGly(x) =0 diGly (o) + N(F (x)N ' doF |y () =

If dGlyy = 0, then N(F(x))""'dFly, = 0, hence x € {F = 0}.
Then x € Ly gN{f = 0} = {0}. If dG|y(y) # 0, we have G # 0. Since dxé|v(x) =0, by
Proposition G = 0, which implies that F # 0. On the other hand, if diGly () # 0,
diGly (x) = —N(F(x))N’ldxF|V(x), and then x € ['y 4(V (x)). Suppose that x is arbitrarily close
to the origin. Since f has an isolated singularity at the origin, we can define for the stratum V (x),
the function B : (0,&) > R,0< ek 1,

Blu)=in f{ |||'djfp'|t H € o (V) N{| Iy (2)] = u,u # 0}} ,

where ||.|| denotes the operator norm, (defined, for each linear transformation 7' : V — W between
normed vector fields, by sup,ey =1 /T (v)|]). Notice that, for each stratum W; € #/,I'y ,(W;) =
[y (Wi \ {f = 0}). Since g is tractable at the origin with respect to ¥ ,dimol/(%) < 1.
Therefore, dimo@f.¢(W;) = dimoT ' o(W;\ {f = 0}) < 1. Hence ' ,(V(z)) N {| f| = u,u # 0}

is a finite number of points and f is well defined.

Since the function f is subanalytic, &(R) = B(1/R), for R > 1, is subanalytic,. Since
by Proposition 2.2 of (LOI et al., 2010) composition of subanalytic functions is a subanalytic
function and the real function A(x) = 1/x,x # 0, is subanalytic, 1/a(R) is subanalytic. Then,
by page 135 of (LOIL, 2003)), there exists ny € N such that ﬁ < R"™_ which implies B(1/R) >
(1/R)™, which implies, B (u) > u™. Hence, for z € Iy, (V(x)) N {fly(y)(2)| = u}, u < 1, we
have



80 Chapter 3. Lé-lomdin formula for the Brasselet number

lldz8lv (x|

o evyn no . . .
Tyl = Blu) > u, which implies,

dzgly o ll > flv o @1 f v -

On the other hand, since N is sufficiently large, we can suppose N > ng. Since g(z) =

2(2) + fV(z), we obtain using the previous inequality that for the critical point x of g,

NIy @Y def vl = lldeglywll > 1flv e @) ldef vl

which implies that N| fy ) (x)[N =170 > 1.

Since x was taken sufficiently close to the origin, f|y ) (x) is close to zero. Hence,
|flv () (x)] < 1, which implies that N — 1 —ng < 0. Therefore, N < ng, which is a contradiction.
So, there is no x sufficiently close to the origin such that d,g = 0. Therefore, g has an isolated

singularity at the origin. |

We will now see how g behaves with respect to the good stratification 7" of X induced
by f.

Proposition 3.2.2. Let ¥ be the good stratification of X induced by f. Then g is prepolar at the

origin with respect to 7.

Proof. By Proposition g is prepolar at the origin with respect to 7. So it is enough
verify that &|w,n(s—o) is nonsingular or has an isolated singularity at the origin, where W;
is a stratum from the Whitney stratification % of X. Suppose that x € Z§|Wim{ s=0}- Then
d.g = dig +Nf(x)N"'d.f = 0, which implies that d,g = 0. But g has no critical point on
W;N{f = 0}, since g is tractable at the origin with respect to #". Therefore, g is prepolar at the
origin with respect to 7. |

Corollary 3.2.3. Let ¥ be the good stratification of X induced by g. Then f is prepolar at the

origin with respect to ¥ .

Proof. By Proposition g is prepolar at the origin with respect to the good stratification ¥’
of X induced by f. Hence, by Lemma 6.1 of (DUTERTRE; GRULHA, 2014), f is prepolar at
the origin with respect to 7. |

Using the previous results, we can relate the relative symmetric polar varieties I’ a7V
and [f (7).

Remark 3.2.4. Let us describe [/ z(7). Let £(g, f) = {x € X;rk(d:g,d.f) < 1}. Since f
is prepolar at the origin with respect to the good stratification induced by g, f |W,~m{g:0} is
nonsingular, for all W; € #,i # 0. Also g is prepolar at the origin with respect to the good
stratification induced by f, which implies that g‘\Wim{ =0} 1s nonsingular, for all W; € #,i # 0.
Nevertheless, since f and g have a stratified isolated singularity at the origin, £, gUZX f = {0}.
Therefore, the map (f,g) has no singularities in {g = 0} or in {f = 0}. Hence, X(g,f) =
Ly (7). So, it is sufficient to describe £(g, f). Let x € (g, f), then
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rk(dg,dif) <1 & (dxg = O) or (dxf = O) or (dxg = ldxf)
& (dxg = 0) or (dxf = 0) or (dxg = (=Nf(x)N! +l)dxf)

Since x € {f = 0},dyf # 0. And since g has an isolated singularity at the origin, d,g # 0.
If -=Nf(x)""14+ 24 =0, then d,g =0, that is, x € Zyg. If -Nf(x)N"1 + 1 #0, then d,g is a
nonzero multiple of d, f, that is, x € f‘f,g(”f/). Therefore,

2(g.f) CTygUT g
On the other hand, if x € £, g, then d,g = 0, and
dig = dg+Nf()"dof = Nf(x)Vdyf.
So,x € X(g, f). lf x € Ty o(¥),dvg = Adyf, and
~ N—1 _ N—1
di§ =dig +Nf(x)" def = (A+N)f(x)"dif,
which implies x € £(g, f). Therefore, Iy (7)) = £(8, f) = Ly gUL4(¥).

Proposition 3.2.5. Let 7 be the good stratification of X induced by f and suppose that g is
tractable at the origin with respect to #". Then, for N > 1,

B, x1(0) = B; x1(0) = By x2(0).

Proof. Since § = g+ fV, over {f = 0},§ = g. Therefore, B, x1(0) = B; xr(0). On the other
hand, by Corollary [3.2.3] f is prepolar at the origin with respect to the good stratification ¥ of X
induced by g and so is g with respect to ¥, by Proposition [3.2.2] Hence, by Corollary [1.8.27]

Bf,X§ (0)= Bg,xf(o)- u

Corollary 3.2.6. Let [ be a generic linear form over X and #” the good stratification of X induced
by /. Denote [~ (0) by H and suppose that g is tractable at the origin with respect to ¥ relative
to /. Then

Bg xn(0) = Bg.xn (0) = Eux:(0).

Proof. It follows directly by Proposition [3.2.5] using the equality B, x:(0) = B; y:(0), and

Corollary [1.8.30] |

Remark 3.2.7. Since, by Remark [2.2.14] the sum of Brasselet numbers Y. mp,, B, xry-1(5)(b;)
is independent of the choice of a sufficiently generic linear form / and so are all the other therms
in Formula we conclude that Euy;z(0), where § = g+ and N >> 1, does not depend on the

generic linear form /.

Corollary 3.2.8. Let N be a sufficiently large positive integer number.
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1. If d is even, Euyz(0) > Euxs(0);

2. If d is odd, Euyz(0) < Euxz(0).
Proof. By Corollary[2.2.1°7, we have that

1. If d is even, By xnw (0) > Euxs(0);

2. Ifdis Odd, Bg7XﬂH(O) § Euxg (0)

Since Euyz(0) = By xnu (0), by Corollary [3.2.6] we have the proof. [ ]

Proposition 3.2.9. Let 7 be the good stratification of X induced by f and ¥ the good stratifi-
cation of X induced by g. Suppose that g is tractable at the origin with respect to #". Then, for
0<|d|xex,

By xs(0) —Bjxz(0) = Y_ymypp,(Euxs(bj) — By xrp-1(5)(D)))-
Proof. By Corollary[2.2.11}
Byxs(0) =By x1(0) = X_ymypp,(Euxs(bj) — By xnp-1(5)(D)))-

Since, by Proposition(3.2.5] B, yr(0) = By x¢(0), we have the formula. [ |

Corollary 3.2.10. Let [ be a generic linear form over X, 7 the good stratification of X induced
by [ and ¥ the good stratification of X induced by g. Suppose that g is tractable at the origin
with respect to ¥'. Then, for 0 < |§| < € < 1,

r

Euxs(0) — Euxz(0) = Y my (Euxs(bj) — B, xry-1(5)(b)))- (3.1
j=1

Proof. It follows directly from Proposition [3.2.9, using that B; x¢(0) = Euxs(0) and that
Bl’Xg (O) = El/txg (0) [ |

Remark 3.2.11. By Remark 2.2.16| Euxs(b;) = Big,Xmlfl(S) (bj), where B;,Xmlfl(S)(bJ') denotes
the Brasselet number By x /-1 (5)2 (b N 171(8)) and L is a generic hyperplane in C" passing
through xg €€ I71(8)Nb;,j € {1,...,r} and 0 € {i1,--+,ig(j)}- So, the formula obtained in
Corollary can be written as

Eux:(0) — Euxz (0) = Ljmy m; (B, x -1 (0i) = By xru-1(5) (D)

Let m be the number of stratified Morse points of a partial Morsification of g[yq /-1 (8)NBe
appearing on X, N f~1(8) N {g # 0} N B and i the number of stratified Morse points of a
Morsification of &|yns-1(5)np, appearing on Xre Nf~1(8)N{g # 0} N Be. The next lemma
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shows how to compare m and 7. In the following we keep the same description of ¥, g given in
the last chapter. Let us recall it: we write the one-dimensional set X g as a union of branches
biU...Ub,, where bj CW;; € # . Let § be aregular value of f,0 < |§| < 1, and let us write,
foreach j € {1,...,r},f H(8)Nb; = {xi,... ,x,-k(j)}. So, in this case, the local degree my,,; of
fl b; 18 k. Let € be sufficiently small such that the local Euler obstruction of X is constant on
biNBe.

Remark 3.2.12. From the beginning we work in a sufficiently small neighborhood B, where
the local Euler obstruction of X is constant on b; N B, and so is the local Euler obstruction of
XN f71(8), since, as we saw above, Euy (b;) = Euyny-1(5)(bj). We also know that, by Lemma
the Brasselet number B, y-1(5y(b;) is constant on the branch b;. Hence, since

Eug xnp-1(5)(bj) = Eux (b)) — By xnp-1(5)(b)),
so is the Euler obstruction of a function Eu, x/-1(5) (b;).

Corollary 3.2.13. In the context described above, we have

-
m= (—l)d_l Z mf7bjEug7mef1(5)(bj) +m.
=

Proof. Lemma ensures that 7/{8=%} is a good stratification of X# relative to f|xs. Since g
is tractable at the origin with respect to ¥, by Theorem [2.1.2]

Bfx(0) = Byx¢(0) =Xy mpp. (Eux (b)) — Euxs (b)) = (1) 'm,
where m is the number of stratified Morse points of a Morsification of g|yn 7-1(8)nB, Appearing
in X,egNf1(8)N{g=0}NBe.
By Proposition [3.2.2] g is prepolar at the origin with respect to ", by Theorem [1.8.25]

Bfx(0) — B x:(0) = (—1)* ',

where 7t is the number of stratified Morse points of a Morsification of g[yn-1(s)np, appearing
in X,eeNf~1(8)N{g =0}NBe.

Using Proposition [3.2.9]
By xs(0) =By xe(0) = Xj_ymyp,(Euxs(bj) — By xnp-1(5)())),

we obtain that

myp,(Euxs(bj) =By xn-1(5)(bj)) = Brxs(0) =By xz(0)
=1

J
r

= Brx(0)~ Z‘,lmﬁbj(Eux(bj) — Euxs(b))) = (=1)""'m
=

— Byx(0)+ (=),
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which implies

m=m+(=1)""Y msp (Eux(bj) =By xr1(5)(b)-
=

Since f has an isolated singularity at the origin, f~!(8) intersects each stratum out of
{f = 0} transversely. So, Eux(V;) = Euyns-1(6)(S), for each connected component of
V;N £~1(8). In particular, Eux (b;) = Euynp1(5)(D))-

So, by Theorem

Eux(bj) —Bg xnf-1(5)(bj) = Ettg xnp-1(8)(b))-

Therefore,

m=m+ (=) L myp Eug xo p15)(0)).
[ |

Proposition 3.2.14. Let & be a regular value of g and o a regular value of f, 0 < |&| <
oy | < 1. If g is tractable at the origin with respect to ¥ relative to f, then B, y-1(q,)(bj) =

By xng1(a) (b))

Proof. Let x; € {f = o} Nbj, D, the closed ball with center at x; and radius r;,
0<|a—08| < |oy| <r < 1. We have

Byxrg (o) () = Y xWinf~(oe)Ng™" (a0 —8) N Dy ) Eutyyp1(gy (Wi £ ()
= Y xWinf o) ng ' (a—8)NDy,)Eux (W;).

Let g(x;) = o, &(x;) = o and f(x;) = 0. Then

pef N a)ng (a=8) & glp)=a—5and f(p)=o
< g(p)=g(x)—6and f(p) =
s glp)+a¥=a+a —8and f(p) =
& g(p)+/Y(p) =8(x) +fN(x)— 8 and f(p) =
< &(p)=§(x)— 6 and f(p) = o
& glp)=d —38and f(p) =

Therefore, denoting & = o’ — 6,

By xrf1(a)@) = Y xWinf(or) Ng~ (= 8) N Dy, )Eux (W)
= Z%(Wiﬂf_l(at)ﬂg_l(&)ﬂsz)Euxmgfl(a)(Wimg_l(&))

By xng1(a)(x)-
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An immediate consequence of the last proposition is the following.

Corollary 3.2.15. Let & be a regular value of g and ¢ a regular value of f, 0 < |&] < || < 1.
If g is tractable at the origin with respect to ¥, then Eugy x\ 14, (D)) = Ett g xng-1(a)(b;)-

Proof. Let x, € {f = o4} Nbj, D, the closed ball with center at x;, and radius r;,
0 < |d/| < |oy| < r; < 1. We have, by Proposition (3.2.14

Eugxnf1(a)%t) = Euxpp1(g)(X) = Bg xnf1(a,) (1)
= Eux(x) = Bjxng1(a) (1)

= Euxng1(a)(%) = By xng1(a) ()

= Eugpxng1(a) (%)

3.3 Lé-lomdin formula for the Brasselet number

Let f,g: (X,0) — (C,0) be complex analytic function-germs such that f has an isolated
singularity at the origin. Let % be the Whitney stratification of X and ¥ the good stratification
of X induced by f. Suppose that X, g is one-dimensional and that £, g N {f =0} = {0}.

Let ¥ be the good stratification of X relative to f constructed in Lemma|2.1.1, ¥ the
good stratification of X relative to g, constructed in Lemma as a refinement of ¥ and ¥
the good stratification of X induced by g =g+ fV,N > 1.

Let o be a regular value of g, &’ a regular value of g, 0 < |a|,|0/| K e < 1, n
be the number of stratified Morse points of a Morsification of f[yq,-1(4)n5, appearing on
XregNg (o) N{f # 0} N B and 7i the number of stratified Morse points of a Morsification of

flxrg-1 (e, appearing on Xyee N g~ (o) N{f # 0} N Be.

Proposition 3.3.1. Suppose that g is tractable at the origin with respect to #". Then, for
0<|f|lxexl,

By x(0) — Bz x(0) = (—1)4"Y(n—n).
Proof. By Corollary
Bex(0) =By x(0) = (=) (n—m) =¥y mpp;(Eux (b)) — By xnr=5} (b)),

where m is the number of stratified Morse points of a Morsification of g|yn 7-1(8)nB, appearing on
XregNf~1(8) N {g # 0} N Be.
By Lemma(3.2.2] g is prepolar at the origin with respect to #". So, by Corollary|1.8.29]
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By x(0) —Bfx(0) = (—1)* N (fi—m),

where 77t is the number of stratified Morse points of a Morsification of |y /-1(5)n5, appearing on

Xreg N f~1(8)N{g # 0} N Be. By Corollary 3.2.13|

-
m= (—l)d_l Z mf7bjEug’me_1(5)(bj) +m.
=1

So,

Byx(0)—Bzx(0) = (=1 (n—a)—(—1)"""(m—m)
_lmf,b,- (Eux(bj) — By xnif=5)(b)))

J

= (—1)6171(” —17)+ Z mﬁbjE”g,Xﬁf*l(&(bﬂ
j=1

|
M-

myp;(Eux(bj) —Bg xnir=5}(b;))
=1

_l)dil(n _ﬁ)a

I
~—~~ ~

since, by Theorem[1.7.5]
Eux(bj) = Bg xn-1(5)(bj) = Ettg xrp-1(5)(b))-

Our next goal is give another proof for the Lé-lomdin formula for the Brasselet number.
For that we need to compare n and 7i. We keep the same description of X, g as before: we
write Xy g as a union of branches by U...Ub,, where b; C Wi € W, where # is a Whitney
stratification of X. Let & be a regular value of f, & be a regular value of g, 0 < |§], || < 1,
and let us write, for each j € {1,...,r},f~1(8)Nb; = {xi,... ,xik<j)} and we denote by my p,;
the local degree of f |b_,-- Let € be sufficiently small such that the local Euler obstruction of X is

constant on b; N Be.

Lemma 3.3.2. Suppose that g is tractable at the origin with respect to ¥ relative to f. If N is
bigger than the maximum gap ratio of all components of the symmetric relative polar curve
Lro(¥), then

(I (M1 (@) = ([Cre(MV (@),

Proof. Since g is tractable at the origin with respect to # ,f’f,g("f/) is a curve. Let us write
[T 4(7)] = X, m[v], where each component v of ['f (%) is a reduced irreducible curve at
the origin. Let o, (7) be a parametrization of v such that ¢, (0) = 0. By Remark [1.8.14] each
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component v intersects V(g —g(p)) at a point p € v, p # 0, sufficiently close to the origin and
such that g(p) # 0. So,

codimx{0} = codimxV (g) + codimxv.

Also, each component (reduced irreducible curve at the origin) v of I:fjg(“// ) intersects
V(g—&(p))atped,p#0and g(p) #0. Since ['fz(7) =Ly gUls4(7), we also have that v
intersects V(g — g(p)) at the point p, so

codimx{0} = codimxV (g) + codimxv.

Therefore, by Remark ,

(M- V() = multig(on(r))
(M@)o = multg(on (1)) = multy(g+ ) (on(1))
= min{mult;g(ou,(t)),mult, f" (o0, (£))}

Now,

mult, f¥ (0 (1)) = N (] [V (f)])o and multrg(au (1)) = (V].[V(8)])o -

The gap ratio of v at the origin for g with respect to f is the ratio of intersection numbers

%. So, if N > %, then mult, fN (04, (¢)) > mult,g(on,(t)).

Making the same procedure over each component v of I" r.¢(7) and using that N is bigger

then the maximum gap ratio of all components v of T r.¢(7), we conclude that

([CreV (@)= (Lre(MV(@)]),-
m

Lemma 3.3.3. Let @ and o’ be regular values of g and g, respectively, with 0 < |¢|,|of/| < € <
1. If N > 1 is bigger than the maximum gap ratio of all components of the symmetric relative
polar curve I’ r.¢(7) and large enough such that Proposition is satisfied, then

r

n=n-+ (—l)d_lN Z mf7bjEuf7xmg_1(a/)(bj).
=

Proof. We start describing the critical points of f,-1(q)np,. We have
XELfle1iqnp, & XE€g ()N Be and rk(dg,d.f) < 1

& xeg (a)NBeand (dig=0) or (dof =0) or (dvg = Adyf, A #0).
Since f has an isolated singularity at the origin and, by Proposition [1.8.4] ¥, g C {g =0},

we have that Xf{,-1(q)np, = g (@)NBeNT;4(7). Therefore, n counts the number of Morse
points of a Morsification of f],-1 g, coming from ¢! (e) NBe NLf (V).
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Now, let us describe Lf |5-1(47)s, -

x€Xflz1(ayB, © x € g (") NBe and rk(dyg,d.f) <
& xeg '(a)NBg and (dig =0) or (dvf =0) or (dvg = A'df, A" #0).

Since f and g have an isolated singularity at the origin, we have that
flg1(ayns, =& (@) NBeNTyg(V).
Since Ty (7)) =Ty (V) UZy g,
2flg 1oz, = (Evgng (@) NBe) U (Tyo(7)Ng (o) NBe).

Notice that, since Ly g N {f = 0} = {0},ZygNg 1 (a')NBe C {f # 0}. Also, by
definition, ['f (%) \ {0} C {f # 0} Therefore, 7i counts the number of Morse points of a
Morsification of f|;-1(g/)np, coming from g “Ha)NBeNZygN{f #0}N{g =0} and from
g (o)NBe MLy (¥ )ﬁ{f7'é 0}N{g #0}.

By Lemman the number of Morse points of a Morsification of f | 51 (a/)NB, APppearing
on & (@) NBeNT s o(¥)N{f #0}N{g#0} is precisely n. Let us descrlbe the number of

Morse points of a Morsification of fls & 1(a)NBe appearing on
g1 (o)NBeNZygn{f#0}N{g=0}. Using that Ty g C {g = 0},

xeg N od)NB:NZyg & §x)=a anddg=0
)

& g+ f)N =d and dg =0
s fN=d andd,g=0
& f(x) e{a,...,on_1} and dg =0,

where {ay,...,0n_1} are the N-th roots of &’. Therefore,

N-1

g )NBeNZyg=J f () NBeNZyg.
i=0

Since Xy g is one-dimensional, f~!'(¢;) N Xy g is a finite set of critical points of
Flg1(aynp,- Since Tps(7) =ZygUT,(7), each branch b; of Ly g is a component of
Ff,g(”// ) If Vj(j) is the stratum of ¥ containing b;, then f|y, )Nz~ () has an isolated sin-
gularity at each point xg € b; N f~ 1 () Ng~ ('), j € {1,...,r} and 0 € {i1,- -, ik(j)} (page
974, (MASSEY| 1996))). Using Proposition we can count the number n; of Morse points
of a Morsification of f|;-1 (a/)nB, 10 a neighborhood of each xg,

Euf xrg-1(ar)(x0) = (=1)*

Since the Euler obstruction of a function is constant on each branch b, by Remarkm
we can denote Eug yqz-1(4)(Xe) bY Ety xnz-1(6y(bj), for all xg € bjN fHo)ng ().



3.3. Lé-lomdin formula for the Brasselet number 89

Therefore, if b; N f~ (o) Ng~ () = {x},,... sy }, the number of Morse points of a Morsi-
]

fication of f{z-1 (1), appearing on (Xree \ {8 =0})Nb;N{g=a'}NB:N{f =} is
d—1
njl +”‘+njmf,bj = (_1) mf7bjEuf7Xﬂg71((X/)('x9)'

Making the same analysis over each @; € V/a/, the number of Morse points of a Morsification
Off‘g—l(a/)mBg appearing in X,., \ {g =0} N{g=0}N{g = o'} N Be is

(— 1)d71N Z mf7bjEuf7Xﬁg~71 (') (bj).
j=1

Therefore,

n=n-+ (—1>d71N Z mf,bjEuﬂXﬁgq(a/)(bj).
=1

Theorem 3.3.4. Suppose that g is tractable at the origin with respect to the good stratification ¥’
of X induced by f. If ¢ and o' are regular values of g and g, respectively, with 0 < ||, |@/| < &,
and N > 1 is bigger than the maximum gap ratio of all components of the symmetric relative
polar curve I’ r.¢(7) and large enough such that Proposition is satisfied, then

r

Bgx(0) =Bex(0)+N Y mppEttyxroi(o (b))
j=1

Proof. It follows by Proposition [3.3.1jand Lemma[3.3.3] |

This formula gives a way to compare the numerical data associated to the generalized
Milnor fibre of a function g with a one-dimensional singular locus and to the generalized Milnor
fibre of the deformation g = g+ f", for N > 1 sufficiently large. This is what L& (LE, |1980) and
Iomdin (IOMDIN] [1974a) have done in the case where g is defined over a complete intersection
in C", g has a one-dimensional critical locus and f is a generic linear form over C". Therefore,

Theorem |3.3.4| generalizes this Lé-lomdin formula.

For X = C", let us consider # = {C"\ {0},{0}} the Whitney stratification of C". If f
has an isolated singularity at the origin, the good stratification #* of C" induced by f is given by

V' ={C"\{f =0}, {f = 0}\ {0},{0}}.

Corollary 3.3.5. Suppose that g is tractable at the origin with respect to ¥ relative to f. If «
and o' are regular values of g and g, respectively, with 0 < |a|, |&| < €, then

2(& (@) NBe) = x(g7" (@) NBe) + (= 1)"'N Y mpp, (8l 15,):0))-
=1

where 1(g;-1(s;,0;) denotes the Milnor number of glyqs-1(5, )5, at a point x;; of the branch
bj, with f(le.) = 5ji'
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Proof. Keeping the same description of X, g, the good stratification of C” relative to f con-
structed in LemmaR.1.1)is ¥/ = {C"\ {f = 0} ULy g {f =0} \ {0}, Zy 5. {0} }.
Applying Lemmal[2.2.2] we obtain that ¥, given by

{C\{f=03U{g=0},{f =0}\{g=0},{g=0}\{f =0}UZy g, {f =0}n{g =0} \Zy g, Xy g, {0}},

is a good stratification of C” relative to g.

By definition of the Brasselet number, if 0 < |o| < € < 1,

B,x(0) = Y x(Ving (o) N Be)Eucn (V;)
Vi€7/"

x((C"\{f =0}u{g=0}Ng (&) NBe)Eucr(C"\ {f =0} U{g =0}
+ 2({r=01\{g=0}ng " (@)NBe)Eucr({f =0} \{g =0})
x((C\{g=0})Nng ' (a)NBe)

x(g” (@) NBe).

The good stratification of C" induced by g is ¥ = {{g = 0},C"\ {g = 0},{0} } and then,
ifo<|od|<ex,

Bgx(0) = x(C"\ {g = 0} Ng ™' (&) N Be)Eucs(C"\ {0}) = x(§~' () NBe).

Since f|; &1 (a)"Be is defined over C" and has an isolated singularity at each x; ] €bj,
considering a small ball Be(xj,) with radius € and center at xj,, by Example [1.7.6] for
0<|f|l<xex,

—1)" [,L( |g a)’xji>

=" D" (g an) ™ (8) NBe(x;) — 1]

(f1(8;; = 8)ng (&) NBe(x;)) — 1, flxj) =

(S8 Ng (& = 8)NBe(x;)) — 1
(f71(5ji)ﬂg*1(a/—5N 8)NBe(xj)) — 1g(le.):a/—5§:]
(

Eugg1(ar)(xj;)

Ji
<g|f* )’1(5)ﬂBe(xj',-))—1

= (_ 1) (g| f x.]l)
where the equality () is justified by Proposition |1.8.26| Therefore, applying Theorem [3.3.4, we

obtain
28" (@) NBe) = 2(g7 (@) NBe) +(=1)""'N Y mypta(gl 15, ):0)):
=

Another consequence of Theorem [3.3.4]is a different proof for the Lé-Iomdin formula
proved by Massey in (MASSEY) 2003) in the case of a function with a one-dimensional singular

locus.
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Corollary 3.3.6. Let 7 be the good stratification of an open set (U,0) C (C"**!,0) induced
by a generic linear form [ defined over C"! and suppose that g : (U,0) C (C"*!,0) — (C,0)
is tractable at the origin with respect to ¥". Let N > 2,z = (29...,z,) be a linear choice of
coordinates such that /'L;’Z(O) is defined for i = 0,1, and Z = (z; ...,24,20) the coordinates for
& =g+1" such that kg 7 1s defined. If N is greater then the maximum gap ratio of each component
of the symmetric relative polar curve I’ r.g» then
2g3(0) = Ag,(0) + (N — 1), (0).
Proof. Without loss of generality, we can suppose that [ = zo. Let F, o be the Milnor fibre of g at
the origin and Fj o the Milnor fibre of g at the origin. Since g has a one-dimensional critical set,
the possibly nonzero L& numbers are ;tg ,(0) and Agl’z (0) and, since g has an isolated singularity
.. . ~ . 0
at the origin, the only possibly nonzero Lé number is itgj(O). By Theorem 4.3 of (MASSEY,
1988)),
1(Fpo) = 1+ (—1)"22,(0) + (—1)"' 2}, (0)

and
X(Fyo) = 1+ (~1)"A%(0)
In (MASSEY| 2003), on page 49, Massey remarked that for 0 < || < € < 1,
lgl,z(o) = Z mbj;u(g|l*1(5),bj)'
j=1
Therefore, by Corollary [3.3.5] we obtain that
L+ (=1)"285(0) = 14 (=1)"A0,(0) + (=1)""'A,,(0) + (—1)"NA, ,(0),

that is,

3.4 Applications for generic linear forms

Letg: (X,0) — (C,0) be a complex analytic function-germ and / be a generic linear form
in C". Let # = {{0},W;,...,W,} be a Whitney stratification of X and #" the good stratification
of X induced by [. Suppose that ¥, g is one-dimensional.

Let ¥ be the good stratification of X relative to [ constructed in Lemma[2.1.1, ¥ the
good stratification of X relative to g, constructed in Lemma as a refinement of ¥ and ¥
the good stratification of X induced by g = g+ IV, N > 1.
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Let & be a regular value of g, o’ a regular value of g, 0 < ||, |0/| < € < 1, n the number
of stratifitd Morse points of a Morsification of | Xng-!(a)nB, appearing on
Xree N g~ () N{l # 0} N Be, n; the number of stratified Morse points of a Morsification of
Uw ({g=0}U{i=0})ng " (a)nB, aPpearing on W Ng (o) N{l # 0} N B, 7i the number of stratified
Morse points of a Morsification of /[y ;-1 (4/)5, appearing on Xy M g 1(a)N{l#0}NBe and
7i; the number of stratified Morse points of a Morsification of / |W,\ {(g=0}ng—" (a')nB, APpearing on
Wing='(a')N{l #0}NBg, foreach W, € #.

As before, we write Xyg as a union of branches by U...Ub, and we suppose that
{l=06}nbj={xi,...,x; }. Foreachr € {i1,..., iz}, let Dy, be the closed ball with center at
x; and radius 1,0 < |a, |&'| < |6| < r; < € < 1, sufficiently small for the balls D,, be pairwise
disjoint and the union of balls D; = Dxl.1 U... Usz‘k«

J
small such that the local Euler obstruction of X at a point of b; N B is constant.

: be contained in B, and € is sufficiently

In (TIBAR, |[1998), Tibir gave a bouquet decomposition for the Milnor fibre of  in terms
of the Milnor fibre of g. Let us denote by F, the local Milnor fibre of g at the origin, F; the local
Milnor fibre of g at the origin and F; the local Milnor fibre of g|(;_s, at a point of the branch b;.

Then there is a homotopy equivalence
ht p
Fg = (FgUE)Vj—y Vi, S(Fj),

where \/ denotes the wedge sum of topological spaces (see (HATCHER, [2001), page 10)
Mj=Nmp, —1,§ (F;) denotes the topological suspension (see (HATCHER| [2001), page 8) over
Fj,E := U;_Cone(Fj) and F; UE is the attaching to F, of one cone over F; C F, for each
j€{l,...,r}. As a consequence of this theorem, Tibar proved a Lé-lomdin formula for the

Euler characteristic of these Milnor fibres.

In the following, we present a new proof for this formula using our previous results.

Proposition 3.4.1. Suppose that g is tractable at the origin with respect to 7. If
0< |af,|a'| < |6] < € < 1, then

XXNE (o) NBe) — g (XNg (@)NBe) = NY my (1-x(F)).
=1

where F; = X Ng~!(a) N H; N Dy, is the local Milnor fibre of gl{i—sy at a point of the branch b
and H; denotes the generic hyperplane /~!(8) passing through x, € b;, for t € {iy,... k() )

Proof. For a stratum V; = W; \ ({g =0} U{l =0}) in ¥", W; € #', let N; be a normal slice to V;

atx; € by, fort € {iy,... s Ik j)} and D,, a closed ball of radius r; centered at x;. Considering the



3.4. Applications for generic linear forms 93

constructible function 1y, the normal Morse index along V; is given by

nVilx) = x(Wi\({g=0}U{l=0})NN;NDy,)
— 2Wi\({g=0;U{l =0} NN:iN{g=a}NDy)
= X(WiNN;ADy) — (WinN:N {g = a} D)
= 1—x(lw).
For a stratum V; = W; \ ({§ =0} € 7, W; € #, let N; be a normal slice to V; at x; € b,
fort € {iy,..., I(j) }. Considering the constructible function 1y, the normal Morse index along

V; is given by

nVilx) = x(Wi\{g=0}NN:NDy)—x(W\{g=0})NNin{g=0a}NDy)
= X(‘/VlleﬂDxt)_X(W/llem{g:a/}met)
= 1—x(w).

Then applying Theorem [I.8.23]for 1x, we obtain that
x(Xng ! (a)NBe) — x(XNg~ ()N (0)NBe) = XL (— 1) 71— x (b))
and that
x(XNg (@) NBe) = x(XNg~ (@) NI~ (0)NBe) = XL (1) mi(1 = 2 (Iw,)),

where d; = dimW;.

Therefore, since y(XNg ' (a)NI~1(0)NBe) = x(XNg () NI~ (0) N Be),

MQ

xXng Ha)NBe) = x(XNg () NBe) =

ni) (1= (bw,))-

l:1

Applying Lemma [3.3.3]and Corollary [3.2.15] we obtain, for each i,
A1y Vv
n, = n; + (—1) i N Z mb_jE”l,Wiﬁgfl(a’) (bj)
j=1

r
di—1 o
— nl+(—1) NZmbjEug,VViﬂHj(bj)’
j=1

where H; denotes the generic hyperplane /~!(§) passing through x; € b;, fort € {ij, ... S ik() )
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Hence

x(XNg (o) NBe) —x(XNg~ (@)NBe) = N} | |

J

mbj<1 —x(xng (a) mHijxt))

DM
VRS

mbjEu&WiﬂHj (bj)) (1 - X(IVV,))
=1

~

I
=
-

~.
I
—_

Il

- =
I

3

&

|

=X

=

fOfl‘E{il,...,ik(j)}. |
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