• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2013.tde-20032013-160120
Documento
Autor
Nombre completo
Jorge Luis Crisostomo Parejas
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2013
Director
Tribunal
Tahzibi, Ali (Presidente)
Apaza, Carlos Alberto Maquera
Kocsard, Alejandro
Título en portugués
Medidas transversas, correntes e sistemas dinâmicos
Palabras clave en portugués
Cohomologia de DeRham
Correntes
Difeomorfismos e medida de máxima entropia
Medidas transversas invariantes
Resumen en portugués
Neste trabalho, fazemos um estudo das correntes e das medidas transversas invariantes por holonomia, e mostraremos o resultado de D. Sullivan [23] sobre a correspondência biunívoca entre estes dois objetos. Em particular mostraremos um resultado conhecido de J. Plante [17] sobre a existência de medidas transversas invariantes sob a hipótese de crescimento sub-exponencial. Apresentamos também, o resultado devido a Ruelle-Sullivan [19] de que a medida de máxima entropia de um difeomorfismo topologicamente mixing pode-se expressar como o produto de duas medidas transversas invariantes para as folheações estáveis e instáveis. Por último, mostramos que os difeomorfismos de Anosov topologicamente mixing, que preservam a orientação das folhas estáveis e folhas instáveis induzem elementos da cohomologia de DeRham
Título en inglés
Transverse measures, currents and dynamical systems
Palabras clave en inglés
Currents
DeRham cohomology
Diffeomorphism and maximum entropy measure
Invariant transverse measure
Resumen en inglés
In this work, we make a study of currents and holonomy invariant transverse measure, and we will show the result of D. Sullivan [23] about the biunivocal correspondence between these two objects. In particular we show a known result of J. Plante [17] about the existence of invariant transverse measures under the hypothesis of sub-exponential growth. Also we will present, the result due to Ruelle-Sullivan [19] that the maximum entropy measure of a diffeomorphism topologically mixing can be expressed as the product of two invariant transverse measures for stable and unstable foliations. Finally, we show that the Anosov diffeomorphisms topologically mixing, which preserve the orientation of the leaves stable and unstable induce elements DeRham cohomology
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
jorgerevisada.pdf (1.78 Mbytes)
Fecha de Publicación
2013-03-20
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.