• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2012.tde-21022013-085310
Document
Author
Full name
Nilva Rodrigues Ribeiro
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2012
Supervisor
Committee
Ruas, Maria Aparecida Soares (President)
Carvalho, Cícero Fernandes de
Hefez, Abramo
Hernandes, Marcelo Escudeiro
Saia, Marcelo José
Title in Portuguese
Singularidades no infinito de funções polinomiais
Keywords in Portuguese
Classificação
Funções polinomiais
Singularidades
Abstract in Portuguese
O principal objetivo desta tese é classificar as singularidades no infinito de polinômios em 'C POT. n'. Aplicamos inicialmente o método utilizado por Siersma e Smeltink em [38], para classificar polinômios de grau 3 em 'C POT. 3'. Este método consiste em classificar polinômios fixando uma forma normal para a parte homogênea de maior grau. As singularidades no infinito de funções polinomiais podem ser estudadas através das singularidades das homogenizações destas aplicações definidas no espaço projetivo. Este é o método utilizado por Bruce e Wall em [11], que fazem uma classificação das superfícies cúbicas no espaço projetivo 'P POT. 3', relacionando as singularidades destas superfícies com a classificação de certos sistemas polinomiais a elas associados. Um dos objetivos do nosso trabalho é estender parcialmente o método de Bruce e Wall para classificar as singularidades no infinito de polinomios f = "f IND. d'1 +'f IND. d' em 'C POT. n', com d 3, através do estudo das singularidades do sistema polinomial g = ('f IND. d' 1, 'f IND. d'). Para polinômios de grau 3 em 'C POT. 3', fazemos um refinamento das formas normais de [11], que possibilita uma descrição mais detalhada da fibra especial e o estudo no infinito da topologia da fibra genérica. Isto é feito com o auxílio do invariante ' IND. n1' (f) definido por Siersma e Tibar em [39], e por eles denominado defeito maximal de Betti
Title in English
Singularities at infinity of polynomial functions
Keywords in English
Classification
Polynomial functions
Singularities
Abstract in English
The main purpose of this thesis is to classify singularities at infinity of polynomial functions f : 'C POT. n' C. We first apply Siersma and Smeltinks method [38] to classify degree 3 polynomials in 'C POT. 3'. This method consists on classifying polynomials fixing the normal form of their highest homogeneous part. The singularities at infinity of polynomial functions may also be studied through the classification of singularities of the projective hypersurfaces F = 0, where F is the homogenization of f. This was the method applied by Bruce and Wall in [11], in their classification of the cubic surfaces in 'P POT. 3'. They relate the singularities of the cubic surfaces with the singularities of certain systems of polynomials. In our work, we partially extend Bruce and Walls method to classify the singularities at infinity of polynomials f = 'f IND. d1' + 'f IND. d' in 'C POT. 3', n 3, based on the investigation of singularities of the polynomial system g = ('f IND. d1', 'f IND. d'). For the class of degree 3 polynomials in 'C POT. 3', we refine Bruce-Walls classification, in order to present a more detailed description of the special fiber of f and to investigate its topology with the help of the invariant Betti maximal defect, introduced by Siersma and Tibar in [39]
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2013-02-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.