• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.55.2014.tde-24042014-105800
Documento
Autor
Nombre completo
Érik Fernando de Amorim
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2014
Director
Tribunal
Bergamasco, Adalberto Panobianco (Presidente)
Hoepfner, Gustavo
Hounie, Jorge Guillermo
Título en portugués
Regularidade analítica para estruturas de coposto um
Palabras clave en portugués
Equações diferenciais parciais lineares
Hipoeliticidade analítica
Sistemas involutivos
Resumen en portugués
Neste trabalho consideramos sistemas de equações diferenciais parciais lineares de primeira ordem, com coeficientes analíticos, definidos em variedades analíticas reais, no caso particular em que seu coposto é igual a um. Demonstramos que esse tipo de sistema admite integrais primeiras locais, e buscamos caracterizar sua hipoelipticidade analítica local e global em termos de propriedades topológicas das mesmas. Também provamos a Fórmula de Aproximação de Baouendi-Trèves
Título en inglés
Analytic regularity for structures of corank one
Palabras clave en inglés
Analytic hipoellipticity
Involutive
Linear partial differential equations
Resumen en inglés
In this work we consider systems of first-order linear partial differential equations, with analytic coefficients, defined on real-analytic manifolds, in the special case in which the corank is equal to one. We prove that this type of systems admits local first integrals, and we seek to characterize their local and global analytic hypoellipticity in terms of topological properties of these first integrals. We also prove the Baouendi-Trèves Approximation Formula
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
ErikAmorim_revisada.pdf (1,017.07 Kbytes)
Fecha de Publicación
2014-04-24
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.