• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2011.tde-25042011-144207
Document
Auteur
Nom complet
Fernando Pereira Micena
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2011
Directeur
Jury
Tahzibi, Ali (Président)
Carvalho, André Salles de
Hammerlindl, Andrew Scott
Hertz, Federico Juan Rodriguez
Olivieira, Krerley Irraciel Martins
Titre en portugais
Avanços em dinâmica parcialmente hiperbólica e entropia para sistema iterado de funções
Mots-clés en portugais
Continuidade absoluta
Difeomorfismo parcialmente hiperbólicos
Entropia
Expoente de Lyapunov
Folheação central
Sistema iterado de funções
Resumé en portugais
Neste trabalho estudamos relações entre expoente de Lyapunov e continuidade absoluta da folheação central para difeomorfismos parcialmente hiperbólicos conservativos de 'T POT. 3'. Sobre tal tema, provamos que tipicamente ('C POT. 1' aberto e 'C POT. 2' denso) os difeomorfismos parcialmente hiperbólicos, conservativos de classe 'C POT. 2' , do toro 'T POT. 3', apresentam folheação central não absolutamente contínua. Desta maneira, respondemos positivamente uma pergunta proposta em [20]. Também neste trabalho, estudamos entropia topológica para Sistema Iterado de Funções. Neste contexto, damos uma nova demonstração para uma conjectura proposta em [14] e provada primeiramente em [15]. Apresentamos um método geométrico que nos permite calcular entropia para transformações de 'S POT. 1', como em [15]. Além de disso o método apresentado se verifica para casos mais gerais, como por exemplo: transformações não comutativas
Titre en anglais
Advances in partially hyperbolic dynamics and entropy for iterated function systems
Mots-clés en anglais
Absolute continuity
Center foliation
Entropy
Iterated functions system
Lyapunov exponent
partially hyperbolic diffeomorphisms
Resumé en anglais
In this work we study relations between Lyapunov exponents, absolute continuity of center foliation for conservative partially hyperbolic diffeomorphisms of 'T POT. 3'. About this theme, (on a 'C POT. 1' open and 'C POT. 2'dense set) of conservative partially hyperbolic 'C POT. 2' diffeomorphisms of the 3-torus presents non absolutely continuous center foliation. So, we answer positively a question proposed in [20]. Also in this work, we study topological entropy for Iterated Functions Systems. In this setting, we give a proof for a conjecture proposed in [14] and firstly proved in [15]. We present a geometrical method that allows us to calcule the entropy for transformations of 'S POT. 1', like in [15]. Furthermore this method holds for more general cases, for example: non commutative transformations
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TESETESE.pdf (394.11 Kbytes)
Date de Publication
2011-04-25
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.