• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2017.tde-26072017-085701
Document
Author
Full name
Cesar Augusto Esteves das Neves Cardoso
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2017
Supervisor
Committee
Carvalho, Alexandre Nolasco de (President)
Bonotto, Everaldo de Mello
Fu, Ma To
Oliva Filho, Sergio Muniz
Pimentel, Juliana Fernandes da Silva
Title in Portuguese
Continuidade de atratores globais: o uso de corretores para a obtenção de melhores taxas de convergência
Keywords in Portuguese
Atratores
Corretores
Estabilidade geométrica
Shadowing
Taxa de convergência
Abstract in Portuguese
Neste trabalho estudamos a continuidade da dinâmica assintótica relativamente a perturbações e, em particular, exploramos a obtenção de melhorias para as taxas de convergência de atratores globais através da introdução de fatores de correção, inspirados pelos resultados da teoria de homogeneização e nos trabalhos de (BABIN; VISHIK, 1992) e (CARVALHO; CHOLEWA, 2011), e através da introdução de mecanismos que melhoram a transferência da taxa de convergência de semigrupos para a taxa de convergência de atratores, inspirados pelos trabalhos (SANTAMARÍA, 2013) e (BABIN; VISHIK, 1992; CARVALHO; CHOLEWA, 2011). A proposta inicial está centrada na obtenção de melhores taxas de convergência de atratores globais através da obtenção de equiatração e da melhoria da taxa de convergência dos semigrupos. Para isto, buscamos melhorar a taxa de convergência do resolvente dos operadores setoriais envolvidos, por meio de uma perturbação singular do resolvente limite que ainda gere uma família de operadores setoriais com resolventes que aproximam o resolvente do problema limite e aproximam melhor os resolventes das perturbações iniciais. Feito isto, obtemos uma melhora imediata de convergência dos semigrupos lineares, depois dos não lineares (através da fórmula da variação das constantes). Motivados pelos resultados de (SANTAMARÍA, 2013), que oferecem uma menor perda na transferência das taxas de convergência dos semigrupos para as taxas de convergência dos atratores, buscamos melhor compreender a propriedade Lipschitz Shadowing, que é responsável direta pela obtenção da taxa de convergência dos atratores diretamente da taxa de convergência dos semigrupos. Isto nos levou a descobrir que podemos obter as propriedade Lipschitz Shadowing e estabilidade estrutural para perturbações Lipschitz de semigrupos Morse-Smale.
Title in English
Continuity of global attractors: the use of correctors to obtain better convergence rates
Keywords in English
Attractors
Correctors
Geometrical stability
Rates of conver gence
Shadowing
Abstract in English
Here we compare the continuity of the asymptotic dynamics with respect to perturbations and, in particular, we explored to obtain improvement of rates of convergence of the global attractor through the introduction of correction factors, inspired by the results of homogenization theory and work of (BABIN; VISHIK, 1992) and (CARVALHO; CHOLEWA, 2011), and the introduction of mechanisms that improve the transference of the convergence rate of semigroups to the convergence rate of attractors, inspired by the work of (SANTAMARÍA, 2013) and (BABIN; VISHIK, 1992; CARVALHO; CHOLEWA, 2011). The initial proposal is focused on achieving best rates of convergence of the global attractors by obtaining equi-atraction and improving the convergence rate of semigroups. For this, we seek to improve the rate of convergence of the resolvents of sectorial operators, through a singular perturbation of the resolvent associated with the limit problem and generate a new family of sectorial operators whose resolvents both approximate the resolvent of the limit problem as they were closer to the resolvents the initial perturbation. Having done this, we obtain an immediate improvement of convergence of linear semigroups, after the non-linear (using the variation of constants formula). Motivated by the results of (SANTAMARÍA, 2013), which offer an improvement in obtaining convergence rates, we seek to study property better Lipschitz Shadowing, which is basically responsible for obtaining the distance of the attractors directly from the convergence rate of the semigroups. This has led us to discover that we can both preserve the Lipschitz Shadowing property under Lipschitz perturbations of Morse-Smale semigroups, and The geometric stability of the attractors.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-07-26
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.