• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2016.tde-27102016-090449
Document
Author
Full name
Leonardo Pires
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2016
Supervisor
Committee
Carvalho, Alexandre Nolasco de (President)
Bezerra, Flank David Morais
Fu, Ma To
Oliveira, Cesar Rogerio de
Pimentel, Juliana Fernandes da Silva
Title in English
Rate of convergence of attractors for abstract semilinear problems
Keywords in English
Attractors
Nonlinear dynamical systems
Parabolic equations
Rate of convergence
Singular pertubations
Abstract in English
In this work we study rate of convergence of attractors for parabolic equations. We consider various types of problems where the diffusion coefficient has varied profiles: large diffusion, localized large diffusion and large diffusion except in the neighborhood of a point where it becomes small. In all cases we obtain a singular perturbation where a rate of convergence of attractors is obtained.
Title in Portuguese
Taxa de convergência de atratores para problemas semilineares abstratos
Keywords in Portuguese
Atratores
Equações parabólicas
Perturbações singulares
Sistemas dinâmicos não lineares
Taxa de convergência
Abstract in Portuguese
Neste trabalho estudamos taxa de convergência de atratores para equações parabólicas. Consideramos vários tipos de problemas onde o coeficiente de difusão apresenta perfís variados: difusão grande, difusão grande localizada e difusão grande exceto na vizinhança de um ponto onde ela torna-se pequena. Em todos os casos consideramos perturbações singulares e uma taxa de convergência para os atratores é obtida.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-10-27
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.