• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.55.2014.tde-28042014-095009
Documento
Autor
Nome completo
Pedro David Huillca Leva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Carlos, 2014
Orientador
Banca examinadora
Carvalho, Alexandre Nolasco de (Presidente)
Paiva, Francisco Odair Vieira de
Santos, Ederson Moreira dos
Título em português
Geração de semigrupos por operadores elípticos em L POT. 2 (OMEGA) e C INF. 0 (OMEGA)
Palavras-chave em português
Condição do cone exterior uniforme
Geração de semigrupos
Operadores elípticos
Semigrupos holomorfos
Resumo em português
Neste trabalho estudaremos a geração do semigrupos por operadores elípticos em dois espaços. Em primeiro lugar estudaremos a geração de semigrupo no espaço 'L POT.2' ('OMEGA') por operadores elípticos de ordem 2m com 'OMEGA' suficientemente regular. Mais precisamente, se 'OMEGA' é um domínio limitado com 'PARTIAL OMEGA' de classe 'C POT. 2m,' L (x;D) = 'SIGMA' / ['alpha'] '< ou =' 'a IND. alpha' (x) 'D POT. alpha' é um operador diferencial elíptico de ordem 2m, com 'a IND. alpha' 'PERTENCE' ' 'C POT.j' ('OMEGA'), j = max {0, ['alpha'] - m}, e A : D(A) 'ESTÁ CONTIDO' EM 'L POT. 2 ('OMEGA') 'SETA' ' L POT. 2 ('OMEGA') é o operador linear dado por D(A) = 'H POT. 2m' ('OMEGA') 'H POT. m INF. 0' ('OMEGA'), (Au)(x) = L (x;D)u; então -A gera um 'C IND. 0'-semigrupo holomorfo em 'L POT.2' ('OMEGA'). ). Em segundo lugar estudaremos a geração de semigrupo em 'C IND. 0'('OMEGA") = ) = {u 'PERTENCE A' C ('OMEGA' 'BARRA") : u['PARTIAL omega' = 0} por operadores elípticos de ordem 2 com 'OMEGA' satisfazendo uma propriedade geométrica. Mais precisamente, se 'OMEGA' ESTA CONTIDO EM' 'R POT. n' (n '> ou =' 2) é um domínio limitado que satisfaz a condição de cone exterior uniforme, L é o operador Lu := - \\SIGMA SUP n INF. i,j = 1' 'a IND. ij 'D IND. ij u + '\SIGMA SUP. n IND. j=1 'b IND. j' u + cu com coeficientes reais 'a IND. ij' , 'b IND. j' , c que satisfazem 'b IND. j ' 'PERTENCE A' 'L POT. INFTY' ('OMEGA') , j = 1, ..., n, c 'PERTENCE A ' 'L POT> INFTY' (OMEGA), c '> ou =' 0, 'a IND. ij' 'PERTECE A' C(' OMEGA BARRA)' ' INTERSECCAO' 'L POT. INFTY' (OMEGA),e 'A IND. 0' é parte de L em 'C IND. 0' ("OMEGA'), isto é, D('A IND. 0') = {u 'PERTENCE A' 'C IND. 0' ('OMEGA') 'INTERSECÇÂO' 'W POT. 2, n INF. loc' ('OMEGA') : Lu 'PERTENCE A' 'C IND. 0' ('OMEGA')' 'A IND. 0' u = Lu, então -'A IND. 0' gera um 'C IND. 0-semigrupo holomorfo limitado em 'C IND. 0' ('OMEGA')
Título em inglês
Generations of semigroups for elliptic operators in 'L POT. 2' ('OMEGA') and 'C IND. 0('OMEGA')
Palavras-chave em inglês
Condition of uniform exterior cone
Elliptic operators
generation of semigroups
Holomorphic semigroups
Resumo em inglês
In this work we study the generation of semigroups by elliptic operators in two spaces. Firstly we study the generation of semigroup in the space 'L POT. 2' (OMEGA) for elliptic operators of order 2m with 'OMEGA' regular domain. More precisely, if 'OMEGA' is a bounded domain with \PARTIAL OMEGA' 'IT BELONGS' 'C POT. 2m', L (x, D) = \ sigma INF.ALPHA '> or =' 2m, 'a IND. alpha' ( x) 'D POT alpha' is an elliptic differential operator of order 2m, with 'a IND. alpha' ' 'IT BELONGS' 'C POT. j' (OMEGA), j = max {0, ['ALPHA'] - m}, and A : D (A) 'THIS CONTAINED' 'L POT. 2' (OMEGA) 'ARROW' 'L POT. 2' (OMEGA) is linear operator given or D(A) = 'H POT. 2m' (OMEGA) 'INTERSECTION' 'H POT. m INF. 0 (OMEGA) (Au) (x) = L (x,D) u then -A generates a holomorphic 'C IND. 0'-semigroup in 'L POT. 2'.(OMEGA). Secondly we study the generation of semigroup in 'C IND. 0' (OMEGA) = {u 'IT BELONGS' (c INF. O' (OMEGA BAR) : 'u [IND. \partial omega' = 0} for elliptic operators of second order with 'OMEGA' satisfying a geometric property. That is, if 'OMEGA' 'IT BELONGS' 'R POT. n' (n > or = 2) is a bounded domain that satisfies the uniform exterior cone condition, L is the elliptic operator given by Lu : = - \SIGMA SUP. n INF. i,j = 1' 'a IND. i, j' 'D IND. ij ' u + \SIGMA SUP n INF. j=1' 'b IND j D IND j' u + cu with real coefficients 'a IND. ij, 'b IND. j' , c satisfying 'b ind. j' 'IT BELONGS' ' L POT. INFTY' (omega), j = 1, ..., n, c 'it belongs' 'L POT. INFTY' (OMEGA), 'c > or =' 0, ''a IND. ij 'IT BELONGS' C (OMNEGA BAR) 'INTERSECTION' (OMEGA), and 'A IND. 0' is part of L in 'C IND. 0'(OMEGA), that is, D ('A IND. 0') = {u 'IT BELONGS' 'C IND. 0' (OMEGA) INTERSECTION 'W POT. 2, n IND. loc (OMEGA)} 'A IND. 0u' = Lu, then - 'A IND. 0' generates a bounded holomorphic 'C IND. 0'-semigroup on 'C IND. 0' (OMEGA)
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-04-29
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.