• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.55.2016.tde-28072016-142742
Document
Auteur
Nom complet
Eber Daniel Chuño Vizarreta
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2016
Directeur
Jury
Mencattini, Igor (Président)
Brandão, Daniel Smania
Cabrera, Alejandro
Forger, Frank Michael
Jardim, Marcos Benevenuto
Titre en portugais
Sobre reticulados de Coxeter-Toda
Mots-clés en portugais
Aplicação do pentagrama
Colchetes de Poisson de Faybusovich-Gekhman
Networks com pesos
Reticulados de Coxeter-Toda
Variedades de Poisson
Resumé en portugais
Esse trabalho visa a investigar a estrutura bi-Hamiltoniana de uma classe de sistemas dinâmicos. Depois de introduzir as ferramentas necessárias, a saber, as noções de variedade de Poisson, de grupo de PoissonLieedenetworknodiscoenoanêl,introduziremosossistemasdinâmicos relevantes nessa dissertação, chamados de reticulados de Coxeter-Toda. Esses sistemas dinâmicos, cujo espaço de fase pode ser identicado com umoportunoquocientedeumacéluladupladeCoxeter-Bruhatdogrupo linear geral, são obtidos por redução do sistema de Toda em GLn. Na parte nal do presente trabalho apresentaremos alguns resultados relacionado à um sistema dinâmico discreto chamado de aplicação do pentagrama, o qual pode ser obtido através uma oportuna discretização do sistema dinâmico de Boussinesq.
Titre en anglais
On Coxeter-Toda lattices
Mots-clés en anglais
Coxeter-Toda lattices
Faybusovich-Gekhman Posson brackets
Pentagram map
Poisson manifolds
Weighted networks
Resumé en anglais
This work aims to study the bi-Hamiltonian structure of a class of dynamical systems. After introducing the relevant tools, namely the notions of Poisson manifold, Poisson-Lie group and of network dened in a disc and in an annulus, we will introduce the dynamical systems of interest for this dissertation, i.e., the Coxeter-Toda lattices. These dynamical systems, whose phase-space can be identied with a suitable quotient of a Coxeter double Bruhat cell of the general linear group, are obtained by reduction starting from the Toda ow on GLn. In the nal part of the present work will be presented some results concerning a discrete integrable system close to the so called Pentagram map, which is a discretization of the Boussinesq dynamical system..
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2016-07-28
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.