• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.55.2018.tde-30102018-152753
Documento
Autor
Nombre completo
Lito Edinson Bocanegra Rodríguez
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2018
Director
Tribunal
Atique, Roberta Godoi Wik (Presidente)
Birbrair, Lev
Dias, Fábio Scalco
Sinha, Raúl Adrián Oset
Título en inglés
The method of exact algebraic restrictions
Palabras clave en inglés
Exact algebraic restrictions
Non quasi homogeneous functions
Symplectic classification
Symplectic invariants
Symplectomorphisms
Resumen en inglés
The aim of this work is to generalize the results given by Domitrz, Janeczko and Zhitomirskii in [10]. In this article they classify in the symplectic manifold (R2, w) where w = dx1 Λ dx2 + · · · + dx2n-1 Λ dx2n is the symplectic form given by Darbouxs Theorem, all the set which are symplectomorphic to a fixed quasi homogeneous curve . To do this classification they defined the algebraic restrictions. We develop a new method called the method of exact algebraic restrictions and show that this classification is solved for the non quasi homogeneous case N = {(x1, x2) = x≥3 = 0} in the symplectic manifold (C2, w ), where f(x1, x2) = x41 + x52 + x21 x32.
Título en portugués
O método das restrições algebraicas exatas
Palabras clave en portugués
Classificação simplética
Funções não quase homogêneas
Invariantes simpléticos
Restrições algebraícas exatas
Simplectomorfismos
Resumen en portugués
Este trabalho tem como objetivo generalizar os resultados feitos por Domitrz, Janeczko e Zhitomirskii em [10]. Neste artigo eles clasificaram na variedade simplética (R2, w) onde w = dx1 Λ dx2 + ... + dx2n-1 Λ dx2n é a forma simpléctica dada pelo Teorema de Darboux, todos os conjuntos que são simplectomorfos a uma curva quase homogênea fixada . Para fazer a classificação eles definem as restrições algebraicas. Nós desenvolvemos um novo método o qual chamamos de método das restrições algebraicas exatas e provamos que a classificação é resolvida para o caso não quase homogêneo N = {f(x1, x2) = x≥3 = 0} na variedade simplética (C2, w ), onde f(x1, x2) = x41 + x52 + x21 x32.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-10-30
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.