• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.55.2017.tde-30112017-170157
Document
Author
Full name
Lilian Akemi Kato
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1996
Supervisor
Committee
Daccach, Janey Antonio
Manzoli Neto, Oziride
Vieira, Joao Peres
Title in Portuguese
UMA GENERALIZACAO DO TEOREMA DO TORO DE ALEXANDER
Keywords in Portuguese
Não disponível
Abstract in Portuguese
O Teorema do Toro d.e Alexand.er, ou seja: "Todo mergulho do toro ,S1 x ,S1 em ,S3 borda um toro sólid.o Sr x D2" foi generalizado para outras dimensões, e vários artigos foram publicados sobre este assunto (veja bibliografia). O presente trabalho tem como objetivo reescrever com detalhes um destes artigos, publicado nas Notas do ICMSC-USP número 28: "A generalization of Alexander 's torus theorem to higher dimensions".
Title in English
A generalization of the Alexander Torus theorem
Keywords in English
Not available
Abstract in English
The Alexander Torus Theorem: "Any embedding of ,Sl x ^91 in ,S3 bounds a Sr x D2" , v¡as generalizated to other dimensions and several papers were published about the subject (see references). The purpose of this work is to detail one of these papers, namely "A generalization of Alexander 's torus theorem to higher dimensions" published at the Notes of ICMSC-USP number 28.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
LilianAkemiKato.pdf (59.00 Mbytes)
Publishing Date
2017-11-30
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.