• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.55.2018.tde-01022018-161419
Document
Auteur
Nom complet
Camilla Ferreira Gomes
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2017
Directeur
Jury
Andrade Filho, Marinho Gomes de (Président)
Rodrigues, Francisco Aparecido
Suzuki, Adriano Kamimura
Viola, Márcio Luis Lanfredi
Titre en portugais
Avaliação de valores em risco em séries de retorno financeiro
Mots-clés en portugais
Distribuição normal
Modelo ARCH
Retornos financeiros
Valor em risco
Resumé en portugais
Os métodos geralmente empregados no mercado para o cálculo de medidas de risco baseiam-se na distribuição adotada para os retornos financeiros. Quando a distribuição Normal é adotada, estas avaliações tendem a subestimar o Value at Risk (valor em risco - VaR), pois a distribuição Normal tem caudas mais leves que as observadas nas séries financeiras. Muitas distribuições alternativas vêm sendo propostas na literatura, contudo qualquer modelo alternativo proposto deve ser avaliado com relação ao esforço computacional gasto para cálculo do valor em risco e comparado à simplicidade proporcionada pelo uso da distribuição Normal. Dessa forma, esta dissertação visa avaliar alguns modelos para cálculo do valor em risco, como a modelagem por quantis empíricos, a distribuição Normal e o modelo autorregressivo (AR), para verificação do melhor ajuste à cauda das distribuições das séries de retornos financeiros, além de avaliar o impacto do VaR para o ano seguinte. Nesse contexto, destaca-se o modelo autorregressivo com heterocedasticidade condicional (ARCH) capaz de detectar a volatilidade envolvida nas séries financeiras de retorno. Esse modelo tem-se mostrado mais eficiente, capaz de gerar informações relevantes aos investidores e ao mercado financeiro, com um esforço computacional moderado.
Titre en anglais
Value at risk evaluation in financial return time series
Mots-clés en anglais
ARCH model
Financial returns
Normal distribution
Value at risk
Resumé en anglais
The most used methods for risk evaluation in the financial market usually depend strongly on the distribution assigned to the financial returns. When we assign a normal distribution, results tend to underestimate the Value at Risk (VaR), since the normal distribution usually has a lighter tail than those from the empirical distribution of financial time series. Many other distributions have been proposed in the literature, but we need to evaluate their computational effort for obtaining the value at risk when compared to the easiness of calculation of the normal distribution. In this work, we compare several models for calculating the value at risk, such as the normal, the empirical-quantile and the autoregressive (AR) models, evaluating their goodness-of-fit to the tail of the distribution of financial return time series and the impact of applying the calculated VaR to the following year. We also highlight the autoregressive conditional heteroskedasticity (ARCH) model due to its performance in detecting the volatility in the series. The ARCH model has proved to be efficient and able to generate relevant information to the investors and to the financial market with a moderate computational cost.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2018-02-01
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.