• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.59.2006.tde-06062008-175542
Document
Author
Full name
Henrique Almeida Fernandes
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2006
Supervisor
Committee
Felicio, Jose Roberto Drugowich de (President)
Cressoni, Jose Carlos
Figueiredo, Wagner
Martinez, Alexandre Souto
Onody, Roberto Nicolau
Title in Portuguese
Propriedades críticas estáticas e dinâmicas de modelos com simetria contínua e do modelo Z(5)
Keywords in Portuguese
classe de universalidade
dinâmica crítica de tempos curtos
expoentes críticos
fenômenos críticos.
Simulações Monte Carlo
Abstract in Portuguese
Neste trabalho, nós investigamos o comportamento crítico dinâmico de três modelos estatísticos utilizando simulações Monte Carlo em tempos curtos. Inicialmente, estudamos os modelos tridimensionais de dupla-troca e de Heisenberg. O expoente dinâmico de persistência global, bem como o expoente z são estimados através de duas técnicas. Para obter o expoente de persistência global, aplicamos diretamente a lei de potência obtida para a probabilidade de persistência global e em seguida fizemos o colapso de uma função universal para duas redes de tamanhos diferentes. Para estimar o valor de z, nós usamos uma função mista que combina resultados de simulações realizadas com diferentes condições iniciais e o cumulante de Binder de quarta ordem dependente do tempo. O expoente dinâmico que governa o comportamento tipo lei de potência da magnetização inicial, é estimado através da correlação temporal da magnetização (modelos de dupla-troca e Heisenberg) e da aplicação direta de uma lei de potência (modelo de Heisenberg). Os expoentes estáticos da magnetização e comprimento de correlação são estimados seguindo o comportamento de escala do parâmetro de ordem e sua derivada, respectivamente. Os resultados confirmam que esses dois modelos pertencem à mesma classe de universalidade. Em seguida, alguns expoentes críticos dinâmicos e estáticos são estimados no ponto de bifurcação do modelo de spin com simetria Z(5) bidimensional. Neste ponto, o modelo apresenta dois parâmetros de ordem diferentes, cada um possuindo um conjunto diferente de índices críticos. Os valores dos expoentes críticos estáticos estão em boa concordância com os resultados exatos. Até onde sabemos, está é a primeira tentativa de se obter os expoentes críticos dinâmicos para os modelos de dupla troca, Heisenberg e para o modelo Z(5).
Title in English
Static and dynamic critical properties of models with continuous symmetry and of the Z(5) model
Keywords in English
critical exponents
critical phenomena.
Monte Carlo simulations
short-time critical dynamics
universality class
Abstract in English
In this work, we investigate the dynamic critical behavior of three statistical models by using short-time Monte Carlo simulations. At first, we study the three-dimensional double-exchange and Heisenberg models. The global persistence exponent, as well as the exponent z are estimated through two techniques. The dynamical exponent of global persistence is obtained by using the straight application of the power law obtained for the global persistence probability and by following the scaling collapse of a universal function for two diferent lattice sizes. To estimate the value of z, we use a mixed function which combines results obtained from samples submitted to diferent initial configurations and the time dependent fourth-order Binder cumulant. The dynamical exponent which governs the power law behavior of the initial magnetization, is estimated through the time correlation of the magnetization (double-exchange and Heisenberg models) and through the straight application of a power law(Heisenberg model). The statical exponents of the magnetization and correlation length are estimated through the scaling behavior of the order parameter and its derivative, respectively. The results confirm which those models belong to the same universality class. Following, the dynamical exponents and the statical exponents are estimated at the bifurcation point of the two-dimensional Z(5)-symmetric spin model. In this point, the model presents two diferent order parameters, each one possessing a diferent set of critical indices. The values of the static critical exponents are in good agreement with the exact results. Our study is, to the best of our knowledge, the first attempt to obtain the dynamic critical exponents of the double-exchange, Heisenberg, and Z(5) models.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Tese_HAFernandes.pdf (828.77 Kbytes)
Publishing Date
2008-06-25
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.