• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.59.2008.tde-17092009-142421
Document
Author
Full name
Ademar Marques Caldeira Filho
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2008
Supervisor
Committee
Mulato, Marcelo (President)
Almeida, Adelaide de
Cardoso, Celso Xavier
Medina Neto, Antonio
Tobias, Carmen Cecília Bueno
Title in Portuguese
Fabricação e caracterização de filmes finos de iodeto de chumbo e cristais de iodeto de mercúrio
Keywords in Portuguese
Iodeto de Chumbo
Iodeto de mercúrio
Abstract in Portuguese
Nos últimos anos, acentuou-se o interesse em materiais semicondutores com alto número atômico e alto gap de energia para aplicações na detecção de radiação ionizante à temperatura ambiente, usando o método direto de detecção. Este trabalho apresentara as características de dois materiais semicondutores na forma de filme para o iodeto de chumbo e de cristal milimétrico para o iodeto de mercúrio. Os filmes foram depositados a partir da evaporadora térmica construída no próprio departamento e caracterizados em função de três distâncias de deposição. O melhor filme obtido foi produzido a 5 cm de distância da fonte, apresentando valores de gap de energia de 2,39 eV e energia de ativação de 1,1 eV. Com o aumento dessa distância as propriedades estruturais, ópticas e elétricas se deterioram, inclusive com variação da composição do material. Os cristais de iodeto de mercúrio foram dissolvidos no solvente orgânico N-N Dimetilformamida e crescidos utilizando a técnica de deposição de solvente. Diferentes taxas de crescimento foram usadas para o crescimento dos cristais. Os melhores resultados foram obtidos para crescimento na estufa a 80ºC, produzindo filmes com gap de energia de 2,2 eV e resistividade da ordem de 108 ?.cm, indicando dopagem não intencional ou excesso de defeitos. A composição obtida é de HgI3, e a razão da fotocorrente pela corrente de escuro quando na faixa de raios-X mamográficos é da ordem de 25. Com as otimizações indicadas no texto e na conclusão do trabalho esses materiais seriam fortes candidatos para aplicações comerciais em imagens médicas para energias na faixa mamográfica.
Title in English
Fabricatins and Characterization of lead iodide films and mercury iodide crystals.
Keywords in English
HgI2
lead iodide
mercury iodide
PbI2
Abstract in English
In the last years there has been a growing interest in semiconductor materials with high atomic number and optical band gap for applications as ionizing radiation detectors at room temperature, using the direct method of detection. Some materials such as lead iodide (PbI2) and mercury iodide (HgI2) have an optical band gap above 2,0 eV, operate at room temperature with low noise and low leakage current, present a high carrier mobility and high stopping power for ionizing radiation. Alternative methods are investigated by several researchers for the fabrication of these materials on top of large areas, with low fabrication time and costs as desirable for applications in medical imaging. In this sense, we present two methods for the development of the detectors. Thermal evaporation, with the development of the deposition system and chamber, is used for the fabrication of lead iodide thin films. The properties of the films were investigated as a function of deposition height. On the other hand, isothermal evaporation was used for the fabrication of mercury iodide milimetric crystals, for the first time using the organic solvent N.N- dimetilformamide (DMF). The properties of the crystals are investigated as a function of concentration and growth temperature. The structural, morphological and compositional properties of the films and crystals were investigated. The optical and electrical properties were also investigated for both films and crystals. The activation energy for electric transport and the test of the materials as sensors (using X-rays in the mammographic region) were studied. This work presents the main results for both materials: films of lead iodide and milimetric crystals of mercury iodide. The crystalline planes of the films have a preferential orientation along the (110) direction, and a morphology of vertical leaves, not similar to other reported results. The obtained composition is PbI2,5. The combination of the morphology and the configuration of co-planar contacts for charge collection reduce the sensitivity to X-rays exposure. A current density ratio (illuminated to dark) of the order of 1.53 was obtained. The best film was deposited at a distance of 5 cm to the source, and it has an optical gap of 2,39 eV and activation energy of 1,1 eV. With increasing deposition distance a degradation of the structural, optical and electrical properties was observed, even with the variation of the composition of the films. For mercury iodide, for any growth rate the shape of the crystals is always cubic. The morphology of the surface depends on the evaporation rate (it can be smooth or present macroscopic holes). The best results were obtained for a growth at 80o C, what leads to a crystal with optical gap of 2.2 eV and electrical resistivity of the order of 108 Ohmcm, what suggests non-intentional doping or excess of defects. The obtained composition was HgI3, and the current ratio (illuminated by mammographic X-rays to dark) was about 25. According to the discussions in the text and in the conclusions, the suggested optimizations could lead to the development of materials that might be useful for technological applications in medical imaging for the mammographic energy range.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Ademar.PDF (3.66 Mbytes)
Publishing Date
2010-08-18
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.