

Universidade de São Paulo Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Departamento de Química Programa de Pós-Graduação em Química

Impacto da diversidade genética e epigenética de genes associados a diferentes intensidades de pigmentação da pele humana

Hiago Airton Ferreira da Silva

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: **Química**

RIBEIRÃO PRETO - SP

2023

UNIVERSIDADE DE SÃO PAULO FACULDADE DE FILOSOFIA, CIÊNCIAS E LETRAS DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA

Hiago Airton Ferreira da Silva

Impacto da diversidade genética e epigenética de genes associados a diferentes intensidades de pigmentação da pele humana

Versão corrigida

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: **Química**

Orientador: Prof. Dr. Celso Teixeira Mendes Junior

RIBEIRÃO PRETO - SP

2023

Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Silva, Hiago Airton Ferreira da

Impacto da diversidade genética e epigenética de genes associados a diferentes intensidades de pigmentação da pele humana, 2023.

140 p. : il. ; 30cm

Dissertação de Mestrado, apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP – Área de concentração: Química.

Orientador: Mendes-Junior, Celso Teixeira.

1. Pigmentação. 2. Epigenética. 3. Polimorfismos genéticos

Nome: Hiago Airton Ferreira da Silva

Título: Impacto da diversidade genética e epigenética de genes associados a diferentes intensidades de pigmentação da pele humana.

Dissertação apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, como parte das exigências para a obtenção do título de Mestre em Ciências, Área: Química

Aprovado em:

Banca Examinadora

Prof. Dr	Instituição:
Julgamento:	Assinatura:
Prof. Dr	Instituição:
Julgamento:	_Assinatura:
Prof. Dr	_Instituição:
Julgamento:	_Assinatura:

Aos meus pais e ao meu irmão, os amores da minha vida que sempre lutaram ao meu lado. Dedico esse trabalho a vocês.

Agradecimentos

Agradeço primeiramente aos meus pais, Marli e Airton, e ao meu irmão, Matheus. Vocês estiveram ao meu lado desde o começo, me deram todo o suporte e amor para chegar até aqui e nunca hesitaram em me apoiar e acreditar em mim, inclusive quando nem mesmo eu acreditava. Eu amo vocês.

Agradeço a toda a minha família, vocês me mostraram que, apesar de vir de escola pública e não ter a melhor das condições, era sim possível ingressar em uma universidade e me tornar um cientista. Em especial, agradeço à minha prima Mari e aos meus primos e parceiros de vida, Gustavo e Danilo.

Agradeço aos melhores amigos que eu poderia encontrar, Renan, Hugo e Vitor (Vô). Vocês foram essenciais tanto na minha trajetória acadêmica quanto no meu desenvolvimento pessoal. Obrigado por toda a ajuda, conselhos e risadas. Não consigo imaginar essa jornada sem vocês. Agradeço também à Júlia Melo e a todas as outras pessoas que me apoiaram nessa trajetória. Sozinho eu jamais teria sucesso.

Agradeço aos meus irmãos de nariz colorido da Companhia do Riso. Vocês transformaram a minha graduação, pós-graduação e a minha vida em algo muito maior. Agradeço imensamente por todas as nossas aventuras no xópim (HC-FMRP), simpósios e rolês. São minha família e me fizeram sorrir até nos dias em que achava impossível encontrar graça. Por isso, a todos vocês, às crianças e às nossas queridas estrelinhas, meu mais sincero "obrigado pela felicidade!".

Agradeço especialmente à Raphaella Angelon, Vitória e Ingrid, que além de palhaças se tornaram amigas muito preciosas para mim.

Agradeço imensamente ao meu orientador, Prof. Dr. Celso, por me acolher em seu laboratório. Deixo registrada minha total admiração não só como professor e pesquisador, mas também como exemplo de ser humano. Muito obrigado pela amizade e por sempre ter paciência e disponibilidade para me ajudar e ensinar.

Agradeço também aos demais membros do Laboratório de Pesquisas Forenses e Genômicas: Thássia, Luiza, Vitor, Matheus e Luciellen. Obrigado por toda ajuda e, principalmente, pelas horas de conversas enquanto devíamos estar trabalhando. Tenho sorte de tê-los como amigos, vocês são pessoas brilhantes. À Universidade de São Paulo, pela infraestrutura, bem como a todos os professores e funcionários de Graduação e Pós-Graduação, pelo aprendizado e suporte. Agradeço também ao apoio financeiro da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), cujo auxílio foi essencial para este projeto.

Por fim, agradeço a todas as pessoas que se disponham a ler qualquer parte, por menor que seja, deste trabalho. Me sinto muito honrado em poder contribuir com a ciência brasileira.

"É como nas grandes histórias. As que realmente tinham importância. Eram repletas de escuridão e perigo. E, às vezes, você não queria saber o fim, porque como poderiam ter um final feliz? Como o mundo poderia voltar a ser como era depois de tanto mal? Mas, no fim, essa sombra é só uma coisa passageira. Afinal, até a escuridão tem que passar. Um novo dia virá. E quando o sol brilhar, brilhará ainda mais forte. As pessoas dessas histórias tinham várias oportunidades de desistir, mas não desistiram. Elas seguiam em frente, porque tinham no que se agarrar: há algo de bom nesse mundo, pelo qual vale a pena lutar."

- Samwise Gamgee, O Senhor dos Anéis: As Duas Torres (adaptado).

Resumo

SILVA, H. A. F. Impacto da diversidade genética e epigenética de genes associados a diferentes intensidades de pigmentação da pele humana. 2023. 140 páginas. Dissertação de Mestrado – Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.

A origem da pigmentação humana é determinada pelo processo de melanogênese, que ocorre nos melanócitos. A melhor compreensão desse mecanismo pode auxiliar desde a área da saúde, no estudo de doenças de pele, até na área forense, no processo de fenotipagem por DNA. O objetivo da fenotipagem por DNA é utilizar polimorfismos de nucleotídeo único (SNPs) presentes em amostras de cenas de crime para inferir a aparência de um possível suspeito e assim ajudar nas investigações criminais. Já existem ferramentas preditivas para essa finalidade, como o HIrisPlex-S, que utiliza 41 marcadores para predizer simultaneamente a cor da pele, cabelo e olhos do indivíduo que deu origem à amostra biológica. No entanto, ainda são necessários modelos que apresentem taxas de acurácia satisfatórias, principalmente no que diz respeito a fenótipos intermediários e em populações miscigenadas, como a brasileira. Com o objetivo de melhor compreender a origem da pigmentação e os mecanismos envolvidos, o presente projeto avaliou a relação entre a pigmentação, polimorfismos genéticos e a metilação do DNA. A metilação do DNA é um dos principais fatores epigenéticos estudados, que consiste na adição de um grupo metil às citosinas seguidas de guaninas (CpGs). Esse processo não altera o código genético, mas possui forte influência na expressão dos genes. Dessa forma, a principal hipótese do trabalho é que a metilação do DNA pode ter influência na determinação dos fenótipos de pigmentação. Para cumprir os objetivos, foram estudados dados obtidos em um banco de dados de livre acesso (Gene Expression Omnibus – GEO). O conjunto utilizado consiste em dados de metilação de amostras de melanócitos claros, intermediários e escuros, fibroblastos, queratinócitos e leucócitos de sangue, obtidos pelo ensaio Infinium Human Methylation 450K BeadChip, da Illumina. Os dados foram analisados em ambiente R, utilizando o pacote ChAMP. As amostras de melanócitos foram comparadas entre si, visando obter relações entre os valores beta de metilação em 21 genes associados à pigmentação e os diferentes tons de melanócitos. Diversas CpGs com diferenças significativas foram encontradas entre os melanócitos claros, intermediários e escuros, como nos genes ASIP, MC1R, SLC45A2 e DEF8, que apresentaram regiões com mais metilação nos melanócitos escuros do que nos claros. Também foram feitas análises comparando os melanócitos com outros tipos celulares (fibroblastos, queratinócitos e leucócitos). Os melanócitos apresentaram hipometilação em relação aos demais tipos celulares nos genes MC1R, MITF, IRF4, SLC24A5, SLC45A2, TYR e TYRP1. Outra abordagem aqui empregada foi estudar os polimorfismos genéticos presentes em ilhas CpGs nos genes associados à pigmentação e nas regiões a 100 kb de cada um. Os SNPs presentes nessas regiões foram genotipados do projeto 1000 Genomes. Em seguida, assumindo que os indivíduos dos grupos populacionais europeu, leste asiático e africano exibem, de modo geral, cores de pele clara, intermediária e escura, respectivamente, foram feitas análises de associações entre os marcadores e tais grupos populacionais, encontrando 203 SNPs associados ao final das análises. Assim, o trabalho encontrou CpGs promissoras para a diferenciação entre tons de melanócitos e diferenciação celular, além de SNPs presentes em ilhas CpGs associados a diferentes populações, evidenciando a existência de relações entre a metilação do DNA, polimorfismos genéticos e a determinação da pigmentação humana.

Palavras-chave: Pigmentação; Epigenética; Polimorfismos genéticos.

Abstract

DA SILVA, H. A. F. Impact of genetic and epigenetic diversity of genes associated with different intensities of human skin pigmentation. 2023. 140 pages. Dissertation (Master's Degree) – Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brasil.

The origin of human pigmentation is determined by melanogenesis, a process that occurs within melanocytes. A better understanding of this mechanism can contribute both in healthcare, particularly in the study of skin diseases, and forensics, regarding the improvement of the DNA phenotyping process. The aim of DNA phenotyping is to use single nucleotide polymorphisms (SNPs) present in crime scene samples to infer the appearance of a possible suspect and thus assist in criminal investigations. There are predictive tools already developed for this purpose, such as HIrisPlex-S, which uses 41 markers to simultaneously predict the skin, hair and eyes color of individuals who originated the biological sample. However, models that present reliable accuracy rates are still needed, especially with regard to intermediate phenotypes and admixed populations, such as the Brazilian one. With the aim of better understanding the origin of pigmentation and the mechanisms involved, this project evaluated the relationship between pigmentation, genetic polymorphisms and DNA methylation. DNA methylation is one of the main epigenetic factors, and consists in the addition of a methyl group to cytosines followed by guanines (CpGs). This process does not alter the genetic code, but it has a strong influence on gene expression. Therefore, the main hypothesis of the present study is that DNA methylation may influence on the determination of pigmentation phenotypes. To achieve the goals, data obtained from a freely accessible database (Gene Expression Omnibus – GEO) were studied. The set used consists of methylation data from light, intermediate and dark melanocytes, fibroblast, keratinocyte and blood leukocyte samples, obtained by Illumina's Infinium Human Methylation 450K BeadChip assay. The data were analyzed in the R environment, using the ChAMP package. The melanocyte samples were compared with each other, obtaining relationships between beta methylation values in 21 genes associated with pigmentation and the different shades of melanocytes. Several CpGs with significant differences were found between light, intermediate and dark melanocytes, such as in the ASIP, MC1R, SLC45A2 and DEF8 genes, which point to

hypermethylation in dark melanocytes when compared with light melanocytes. Analyzes were also carried out comparing melanocytes with other cell types (fibroblasts, keratinocytes and leukocytes). Melanocytes showed hypomethylation in relation to many cell types in the *MC1R*, *MITF*, *IRF4*, *SLC24A5*, *SLC45A2*, *TYR* and *TYRP1* genes. Another approach used here was to study the genetic polymorphisms present in CpG islands in and around pigmentation genes. The SNPs present in these regions were genotyped from the 1000 Genomes project dataset. Then, assuming that individuals from the European, East Asian and African population groups generally exhibit light, intermediate and dark skin color, respectively, analyzes of associations between the markers and such population groups were carried out, finding 203 associated SNPs. Thus, this work revealed promising CpGs for the differentiation between melanocyte tones and cellular differentiation, in addition to SNPs present in CpG islands that are associated with different populations, highlighting the existence of relationships between DNA methylation, genetic polymorphisms, and the determination of human pigmentation.

Keywords: Pigmentation; Epigenetics; Genetic polymorphisms.

Lista de Figuras

Figura 1. Processo da melanogênese, reações e regulações que ocorrem na síntese de eumelanina e feomelanina. Figura criada com o auxílio da ferramenta ACD/ChemSketch (ACD/Labs Inc.) e retirada de Marcorin (2017)......21 Figura 2. Adição do radical metil (-CH3) na posição 5 do anel pirimídico da citosina, catalisado pela enzima DNA-metil-transferase (DNMT), transformando-a em 5-metilcitosina, no processo de metilação do DNA. Ilustração realizada por meio do software Figura 5. Número de DMPs encontradas nas análises entre melanócitos escuros e claros (E x C), escuros e intermediários (E x I) e entre claros e intermediários (C x I). Figura 6. Valores beta de metilação das DMPs presentes em CGI na região 3'UTR e no corpo do gene ASIP nos diferentes tipos de melanócitos. Da esquerda para a Figura 7. Valores beta de metilação das DMPs presentes em CGI no corpo do gene HERC2 nos diferentes tipos de melanócitos. Da esquerda para a direita: cg27374167, cg10839322 e cg25622125......59 Figura 8. Valores beta de metilação das DMPs presentes na região do 1º éxon do gene MC1R nos diferentes tipos de melanócitos. Da esquerda para a direita: cg04177015, cg06475006, cg01511465, cg02025435, cg04513015 (SNP rs105009) e cg0726033.....60 Figura 9. Valores beta de metilação das DMPs presentes no corpo do gene MITF nos diferentes tipos de melanócitos61 Figura 10. Valores beta de metilação das DMPs presentes na região exônica do gene SLC45A2 nos diferentes tipos de melanócitos. Da esquerda para a direita: cg02074780 (corpo), cg04302388 e cg14189614 (1º éxon)......61 Figura 11. Número de DMPs encontradas nas comparações entre melanócitos e fibroblastos (M x F), leucócitos (M x L) e queratinócitos (M x Q).....65 Figura 12. Valores beta de metilação das DMPs presentes na região 5'UTR do gene ANKRD11 nos diferentes tipos celulares. Da esquerda para a direita: cg08583277, **Figura 13.** Valores beta de metilação das DMPs presentes na região exônica do gene *MC1R* nos diferentes tipos celulares. Da esquerda para a direita: cg04177015, cg06475006, cg01511465, cg02025435 e cg04513015......68

Figura 18. Valores beta de metilação das DMPs presentes no corpo do gene *IRF4* nos diferentes tipos celulares. Da esquerda para a direita: cg24319508, cg07817739, cg11417701, cg17336615 e cg07574896......71

 Figura 24. Valores beta de metilação das DMPs presentes no gene SLC24A4 nos diferentes tipos celulares. Da esquerda para a direita: cg07031872, cg24195486, cg14512346 (TSS1500), cg16267322 (corpo) e cg05200313 (3'UTR).

 Figura 25. Região diferencialmente metilada (DMR) encontrada entre melanócitos e demais tipos celulares em CGI na região promotora do gene POMC.

 75

 Figura 26. Nível de metilação da cg01844321 entre a amostra de leucócitos (sangue) e diferentes tipos celulares da pele.

 77

 Figura 27. Nível de metilação da cg08792630 entre a amostra de leucócitos (sangue) e diferentes tipos celulares da pele.

 77

 Figura 28. Número de SNPs associados nas comparações entre grupos populacionais africano e europeu (AFR x EUR), africano e leste asiático (AFR x EAS) e europeu e leste asiático (EUR x EAS).

Lista de Tabelas

Tabela 1. SNPs presentes no sistema preditivo HIrisPlex-S
Tabela 2. Descrição das populações e número de indivíduos amostrados no projeto
1000 Genomes53
Tabela 3. Número de DMPs encontradas nos genes de pigmentação nas
comparações entre melanócitos escuros e claros, escuros e intermediários, e claros e
intermediários57
Tabela 4. Número de DMPs encontradas nos genes de pigmentação nas
comparações entre melanócitos e fibroblastos, queratinócitos e leucócitos65
Tabela 5. DMPs presentes no gene SOGA1 para diferenciar amostras de leucócitos
(sangue) e tipos celulares da pele76
Tabela 6. Valores beta de metilação nas DMPs utilizadas para identificação de sangue
e pele nos diferentes tipos celulares aqui estudados
Tabela 7. SNPs presentes no sistema HIrisPlex-S e suas posições em relação a ilhas
CpGs
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos dosistema HIrisPlex-S
 Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos dosistema HIrisPlex-S.83Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupospopulacionais do projeto 1000 Genomes.84
 Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. 84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos dosistema HIrisPlex-S.83Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupospopulacionais do projeto 1000 Genomes.84Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células deinteresse, recuperadas a partir do portal Ensembl por meio do software SNPnexus.
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. 83 Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. 84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus. 85
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos dosistema HIrisPlex-S.83Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupospopulacionais do projeto 1000 Genomes.84Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células deinteresse, recuperadas a partir do portal Ensembl por meio do software SNPnexus.85Tabela 11. Ilhas CpGs presentes em regiões 100 kb upstream e downstream dos
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. 83 Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. 84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus. 85 Tabela 11. Ilhas CpGs presentes em regiões 100 kb upstream e downstream dos genes utilizados no sistema HIrisPlex-S. 87
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. 83 Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. 84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus. 85 Tabela 11. Ilhas CpGs presentes em regiões 100 kb upstream e downstream dos genes utilizados no sistema HIrisPlex-S. 87 Tabela 12. Blocos de haplótipos encontrados nos grupos populacionais AFR e EUR
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. 83 Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. 84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus. 85 Tabela 11. Ilhas CpGs presentes em regiões 100 kb upstream e downstream dos genes utilizados no sistema HIrisPlex-S. 87 Tabela 12. Blocos de haplótipos encontrados nos grupos populacionais AFR e EUR 60 Projeto 1000 Genomes em cada cromossomo que inclui os genes do HIrisPlex-S. 87
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. 83 Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. 84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus. 85 Tabela 11. Ilhas CpGs presentes em regiões 100 kb upstream e downstream dos genes utilizados no sistema HIrisPlex-S. 87 Tabela 12. Blocos de haplótipos encontrados nos grupos populacionais AFR e EUR do Projeto 1000 Genomes em cada cromossomo que inclui os genes do HIrisPlex-S. 89
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. 83 Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. 84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus. 85 Tabela 11. Ilhas CpGs presentes em regiões 100 kb upstream e downstream dos genes utilizados no sistema HIrisPlex-S. 87 Tabela 12. Blocos de haplótipos encontrados nos grupos populacionais AFR e EUR do Projeto 1000 Genomes em cada cromossomo que inclui os genes do HIrisPlex-S. 89 Tabela 13. SNPs estatisticamente significantes após a aplicação da correção de 89
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. 83 Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. 84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus. 85 Tabela 11. Ilhas CpGs presentes em regiões 100 kb upstream e downstream dos genes utilizados no sistema HIrisPlex-S. 87 Tabela 12. Blocos de haplótipos encontrados nos grupos populacionais AFR e EUR do Projeto 1000 Genomes em cada cromossomo que inclui os genes do HIrisPlex-S. 89 Tabela 13. SNPs estatisticamente significantes após a aplicação da correção de Benjamini-Hochberg (BH) em análise de associação entre genótipos e os grupos
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S. .83 Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes. .84 Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus. .85 Tabela 11. Ilhas CpGs presentes em regiões 100 kb upstream e downstream dos genes utilizados no sistema HIrisPlex-S. .87 Tabela 12. Blocos de haplótipos encontrados nos grupos populacionais AFR e EUR do Projeto 1000 Genomes em cada cromossomo que inclui os genes do HIrisPlex-S. .89 Tabela 13. SNPs estatisticamente significantes após a aplicação da correção de Benjamini-Hochberg (BH) em análise de associação entre genótipos e os grupos populacionais africano (pele escura) e europeu (pele clara) do projeto 1000 Genomes.
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S.
Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S.

1. Introdução	19
1.1. Pigmentação humana	20
1.2. Fenotipagem por DNA	22
1.3. Epigenética e metilação do DNA	25
1.4. Metilação do DNA, ancestralidade e melanogênese	27
1.5. Marcadores epigenéticos na identificação de fluidos e tecidos	30
2. Justificativa	33
3. Hipótese	36
4. Objetivos	38
4.1. Objetivo geral	
4.2. Objetivos específicos	39
5. Materiais e Métodos	40
5.1. Dados de metilação	46
5.1.1. Diferenciação entre melanócitos	49
5.1.2. Diferenciação entre tipos celulares	49
5.2. Seleção de polimorfismos presentes em CGI e proximidades	50
5.2.1. SNPs presentes no sistema HIrisPlex-S	50
5.2.2. Genótipos obtidos pelo projeto 1000 Genomes	51
6. Resultados e Discussão	55
6.1. Metilação, tons de melanócitos e diferenciação celular	56
6.1.2. Metilação e pigmentação dos melanócitos	56
6.1.2. Metilação para diferenciar tipos celulares	64
6.2. Seleção de SNPs em CGIs e suas vizinhanças	79
6.2.1. SNPs presentes no sistema HIrisPlex-S	79
6.2.2. SNPs presentes em regiões próximas aos genes	86
7. Conclusão	103
Referências	107
Apêndice	114
Apêndice A	115
Apêndice B	122

Sumário

1. Introdução

1. Introdução

1.1. Pigmentação humana

A pigmentação é um dos traços fenotípicos mais variáveis em humanos, o que gera grande auxílio na diferenciação de indivíduos pelas suas características externas.

Nesse sentido, é importante elucidar a base molecular de traços como a coloração da pele, cabelos e olhos. Em humanos, a origem dessa pigmentação é determinada por um grupo complexo de biopolímeros conhecido como melanina. As suas diferentes moléculas (eumelanina e feomelanina) são produzidas por células chamadas de melanócitos, presentes na camada basal da epiderme, no bulbo capilar e na íris (PARRA, 2007).

A síntese de melanina ocorre mais especificamente nos melanossomos, organelas dos melanócitos, em um processo denominado melanogênese (Figura 1). Tal processo consiste em uma cadeia de reações químicas iniciada usando o aminoácido tirosina como principal substrato e a enzima tirosinase (TYR) como catalizador. A tirosinase inicialmente estimula a hidroxilação da tirosina, originando a 3,4-dihidroxifenilalanina (DOPA) e depois sua oxidação em DOPAquinona.

Partindo da DOPAquinona, a síntese pode seguir dois caminhos diferentes, os quais irão resultar em dois diferentes tipos de melanina. O primeiro ocorre na presença de cisteína, que reage com a DOPAquinona produzindo 3- ou 5-cisteinilDOPAs, que posteriormente se oxidam e polimerizam, originando a feomelanina, pigmento que contribui com tons entre vermelho e amarelo. O outro caminho de reações da DOPAquinona ocorre na ausência da cisteína, no qual a DOPAquinona sofre espontaneamente uma ciclização intramolecular e forma leucodopacromo (ou ciclodopa). Em seguida, a DOPAquinona e a ciclodopa realizam uma troca redox, produzindo DOPA, que pode seguir novamente a biossíntese, e o dopacromo, que se decompõe em 5,6-dhidroxiindol (DHI) ou forma o 5,6-dihidroxiindol-2-ácido carboxílico (DHICA) na presença de dopacromo tautomerase (conhecida como TYRP2 ou DCT). Finalmente, o DHI e DHICA são oxidados pela proteína relacionada à tirosinase 1 (TYRP1) e formam a eumelanina, pigmento que contribui com tons entre marrom e

preto nos fenótipos de pigmentação (ITO, 2003; PARRA, 2007; SLOMINSKI et al., 2004).

Figura 1. Processo da melanogênese, reações e regulações que ocorrem na síntese de eumelanina e feomelanina. Figura criada com o auxílio da ferramenta ACD/ChemSketch (ACD/Labs Inc.) e retirada de Marcorin (2017).

É importante destacar que o processo da melanogênese é passível de ser regulado, sendo o receptor de melanocortina 1 (MC1R) o regulador positivo mais importante. O MC1R é estimulado pela ligação do hormônio alfa estimulador de melanócito (α-MSH), produzido pelo gene pró-opiomelanocortina (POMC). A ligação do α-MSH ao MC1R tem a funcionalidade de ativar a proteína de ligação responsiva ao cAMP (CREB), consequentemente aumentando a expressão do fator de transcrição de microftalmia (MITF), que estimula a transcrição dos principais catalizadores da melanogênese, as enzimas TYR, TYRP1 e DCT anteriormente citadas. Por outro lado, a ligação de seu antagonista, a proteína sinalizadora agouti (ASIP), pode inibir a eumelanogênese, produzindo majoritariamente a feomelanina (CICHOREK et al., 2013; LIU; WEN; KAYSER, 2013; MILLINGTON, 2006).

Ao contrário do que se possa inicialmente imaginar, a diferença da cor da pele entre diferentes grupos étnicos não está relacionada com a quantidade de melanócitos na epiderme, mas pela concentração e tipo de melanina que eles produzem, e secundariamente pelo tamanho dos melanossomos e outros fatores, como quantidade de vasos sanguíneos em peles mais avermelhadas (ALALUF et al., 2002). Assim, a regulação da melanogênese determina a diferença de pigmentação observada entre indivíduos e entre seus próprios tecidos — por exemplo, uma pessoa com pele muito clara e cabelos escuros (LIU; WEN; KAYSER, 2013). Além disso, outros fatores podem influenciar na expressão gênica, tais como mecanismos epigenéticos e o ambiente externo do indivíduo (STURM; TEASDALE; BOX, 2001).

A compreensão da melanogênese e de fatores genéticos associados à pigmentação humana tem aplicação em muitas áreas, como na da saúde, em relação a doenças de pele, e na forense, no caso da fenotipagem forense por DNA, que será um dos focos do trabalho.

1.2. Fenotipagem por DNA

Muitas vezes não é possível identificar o indivíduo precursor de uma amostra biológica encontrada em uma cena de crime, seja pela ausência de suspeitos, falta de perfis armazenados na Rede Integrada de Bancos de Perfis Genéticos (RIBPG) para comparação do material, ou mesmo pela impossibilidade de análise da amostra devido a um avançado estágio de degradação. Se não houver outra prova relevante, casos assim podem ser arquivados ou até mesmo prescrever. Nesse cenário, a fenotipagem forense por DNA pode ajudar na sua elucidação, trazendo informações fenotípicas que contribuam com as investigações criminais e identificação de corpos.

A fenotipagem forense por DNA é um campo de estudos da genética forense que tem o objetivo de predizer características externamente visíveis de um indivíduo a partir da análise de SNPs (do inglês, *Single Nucleotide Polymorphisms*), marcadores genéticos presentes no DNA, nos quais dois ou mais alelos existem em uma posição nucleotídica, ou de InDels, isto é, inserções/deleções (KAYSER, 2015).

Uma grande vantagem de analisar os SNPs é justamente o fato de se originarem por mutação pontual, isto é, uma alteração em apenas uma base nitrogenada. Deste modo, é possível analisá-los em amostras degradadas (como é o caso daquelas encontradas em cenas de crime) muito mais facilmente do que outros tipos de marcadores, como, por exemplo, os microssatélites ou STRs (*Short Tandem Repeats*), os quais possuem alelos mais longos compostos por diversas repetições de unidades de 2 a 7 pares de bases de comprimento (FAN; CHU, 2007).

Atualmente já existem ferramentas para a predição de fenótipos ligados à pigmentação, devido ao fato de ser a característica física de menor nível de complexidade e ser a melhor compreendida. A primeira ferramenta a ser desenvolvida e validada foi o IrisPlex, capaz de predizer a cor dos olhos em azul, intermediário (verde/mel) ou castanho a partir de 6 SNPs altamente informativos (WALSH et al., 2011a, 2011b). Posteriormente foi desenvolvido um modelo para predição da cor dos cabelos em loiro, castanho, preto ou ruivo, a partir de 22 marcadores. Esse conjunto foi somado ao IrisPlex, originando o modelo HIrisPlex, capaz de determinar simultaneamente a cor dos olhos e cabelos utilizando 24 marcadores genéticos, sendo 23 SNPs e 1 InDel (WALSH et al., 2013, 2014). Por fim, foi desenvolvido o sistema HirisPlex-S, que utiliza a informação de 41 marcadores para predizer simultaneamente a pigmentação do cabelo, dos olhos e da pele, classificando-a de acordo com a escala de Fitzpatrick (CHAITANYA et al., 2018; WALSH et al., 2017).

Além desses, existem os sistemas preditivos ligados à ferramenta Snipper. Dentre os sistemas disponíveis, três foram desenvolvidos para predição da cor dos olhos (RUIZ et al., 2013), classificando-os em azul, verde/mel e castanho: o primeiro composto por 7 SNPs (dos quais 6 estão presentes no sistema IrisPlex), o segundo por 13 SNPs (adicionando 6 marcadores ao primeiro sistema) e o terceiro por 23 SNPs (adicionando 10 marcadores ao segundo sistema). Ainda existem mais dois modelos, um composto por 12 SNPs para predição da cor dos cabelos, classificando-os em loiro, castanho, preto e ruivo (SÖCHTIG et al., 2015), e outro composto por 10 SNPs para cor da pele, classificando-a em branca, intermediária ou escura (MAROÑAS et al., 2014).

Outras duas ferramentas foram desenvolvidas por pesquisadores dos Estados Unidos e da Nova Zelândia. O modelo proposto nos EUA é voltado para predição da cor dos olhos e pele a partir de 8 SNPs (HART et al., 2013). Diferentemente dos citados anteriormente, esse modelo classifica os fenótipos da cor dos olhos em azul, castanho, verde, "não-azul" e "não-castanho" e a cor da pele em clara, "não-escura" e "não-clara". No entanto, essas predições que apenas apresentam uma exclusão de cores são de utilidade limitada, pois retribui um resultado muito amplo e consequentemente não traz grande ajuda para uma investigação policial. Já o modelo desenvolvido na Nova Zelândia utiliza esquemas de árvores de decisão para definir a cor dos olhos em azul, intermediário ou castanho, a partir de 4 SNPs (ALLWOOD; HARBISON, 2013). As predições segundo esse modelo são feitas seguindo três árvores para classificação binária de cada categoria (cor vs. não-cor) e uma árvore para predição geral incluindo as três categorias.

Os modelos HIrisPlex-S e Snipper foram desenvolvidos a partir de estudos realizados com indivíduos majoritariamente europeus. Assim, é importante que sua performance seja analisada também em populações que possuem diferentes backgrounds genéticos. A população brasileira pode ser de grande utilidade para esta finalidade, visto que consiste em uma das mais heterogêneas do mundo, sendo originada por uma mistura interétnica envolvendo contribuições principais de grupos europeus, africanos e ameríndios (SANTOS et al., 2010). Essas contribuições estão presentes em diferentes proporções ao longo das regiões geográficas brasileiras, resultando em uma grande variabilidade de fenótipo de pigmentação de pele, olhos e cabelos, que seguem uma escala de tons contínuos (SALZANO; SANS, 2014; SANTOS et al., 2010).

Recentemente, os conjuntos HirisPlex e Snipper foram testados em uma amostra de 501 indivíduos brasileiros (CARRATTO et al., 2021). Em relação à cor dos olhos, ambas apresentaram dificuldades na predição de olhos intermediários. Para a cor dos cabelos, foi encontrada uma maior deficiência na predição de tons loiro-escuro e castanho-claro. Na predição da pigmentação da pele, o sistema HIrisPlex-S falha na predição de peles claras, mas tem boa performance na predição de peles escuras. Em contraste, pode-se observar uma boa performance do sistema Snipper na predição de peles brancas, e muitas falhas na predição de peles escuras.

Dessa forma, apesar dos grandes avanços na área de predição de traços de pigmentação, ainda são necessários modelos que apresentem taxas de acurácia satisfatórias nas populações miscigenadas, principalmente no que diz respeito a fenótipos intermediários (que são muito mais frequentes). Para isso, é preciso identificar novos marcadores que estejam intimamente associados com tais fenótipos, a fim de complementar as ferramentas preditivas já existentes, ou promover a criação de novas, melhorando suas taxas de acurácia e tornando-as mais confiáveis no âmbito forense.

Um novo caminho a se seguir, é levar em consideração o impacto de fatores epigenéticos na predição de tais características. Por influenciarem na expressão diferencial de genes em diferentes tecidos, marcações epigenéticas em genes ligados à síntese de melanina têm o potencial de promover alterações em sua expressão e consequentemente alterar o fenótipo esperado diante dos genótipos de um indivíduo. E isso poderia explicar as inconsistências observadas nos resultados preditos pelas ferramentas.

1.3. Epigenética e metilação do DNA

O termo epigenética foi utilizado pela primeira vez na década de 1940, se referindo aos estudos das interações causais entre genótipos e fenótipos morfológicos (WADDINGTON, 1942). Atualmente, a epigenética pode ser definida como mudanças reversíveis e transmitidas durante as divisões celulares, sendo, portanto, herdáveis, sem que haja quaisquer alterações na sequência original de nucleotídeos do DNA. Quando presentes em genes, determina sua expressão ou silenciamento e afeta o respectivo fenótipo (ZHOU et al., 2021). Assim, o fenótipo não é determinado apenas pelo genótipo, mas também por modificações químicas reversíveis e herdáveis na molécula do DNA.

As modificações epigenéticas têm efeito na expressão de genes, na inativação do centrômero, na regulação do *imprinting* genômico e inativação de genes de um dos cromossomos X nas mulheres (compensação de dosagem). Um importante caminho da pesquisa em epigenética é estudar sua influência em patologias, visto que modificações nos padrões epigenéticos podem levar ao aparecimento de diversas doenças, incluindo cânceres (SIMMONS et al., 2008).

Entre os processos epigenéticos, os principais são a metilação do DNA e as modificações das histonas que, em conjunto com os complexos de remodelação da cromatina, com a arquitetura nuclear e com os RNAs não-codficantes (LncRNAs e microRNAs), definem a estrutura da cromatina ao redor de um gene e sua atividade transcricional (DELCUVE; RASTEGAR; DAVIE, 2009).

Um dos principais mecanismos epigenéticos amplamente estudado é a metilação do DNA, que ocorre em uma citosina seguida de guanina, um dinucleotídeo chamado CpG. Como ilustrado na Figura 2, a metilação consiste na adição de um radical metil (-CH₃) no carbono 5 dessa citosina, originando a chamada 5-metilcitosina (5mC). Essa reação é catalisada por um grupo de enzimas chamadas DNAmetil-transferases (DNMTs) que transferem o grupo metil da S-adenosil-metionina (SAM) ao carbono 5 da citosina. Enquanto a DNMT1 é responsável por manter o padrão de metilação na nova fita de DNA após sua síntese, as enzimas DNMT3a e DNMT3b, chamadas de *de novo* DNMTs, são responsáveis por promover novas metilações na molécula de DNA (MOORE; LE; FAN, 2013).

Figura 2. Adição do radical metil (-CH3) na posição 5 do anel pirimídico da citosina, catalisado pela enzima DNA-metil-transferase (DNMT), transformando-a em 5-metil-citosina, no processo de metilação do DNA. Ilustração realizada por meio do software ACD/ChemSketch (ACD/Labs Inc.).

A metilação do DNA é um processo reversível e dinâmico, e sua desmetilação pode ocorrer por meio passivo (pela simples ausência da DNMT1 na replicação de novas fitas) ou por meio ativo. Duas vias para a desmetilação ativa são conhecidas, ambas mais complexas que a metilação. A primeira segue uma rota de oxidação da 5mC e utiliza enzimas como as dioxigenases da familia *ten-eleven translocation* (TET 1, 2 e 3) e timina DNA glicosilase (TDG), originando um sítio apirimidínico (AP). Por outro lado, a segunda via ocorre utilizando a citidina desaminase / apolipoproteína B induzida pela atividade de edição de mRNA (AID/APOBEC) que converte a 5mC em timina por desaminação, originando uma incompatibilidade T:G. Em ambas as vias, enzimas de reparo de excisão de base (BER) posteriormente reparam com eficiência o sítio AP e a incompatibilidade T:G novamente em C:G (BAYRAKTAR; KREUTZ, 2018).

As regiões do DNA com alta concentração de sítios CpG são chamadas de ilhas CpG (CGI). Há diferentes critérios para definir as CGIs, sendo o mais utilizado proposto em 1987 por Gardiner-Garden e Frommer, que classificaram uma ilha CpG como regiões com pelo menos 200 pb, com porcentagem de C+G maior que 50% e razão CpG observada/esperada (diante da composição de bases do genoma em questão) maior que 0,6 (GARDINER-GARDEN; FROMMER, 1987).

Na região promotora de genes, a metilação das ilhas CpG está relacionada ao silenciamento gênico, que pode ocorrer de duas maneiras. Uma delas é o silenciamento direto, quando a própria metilação do DNA impede a ligação dos fatores de transcrição ou afeta o estado de condensação e a estrutura da cromatina, deixando o gene indisponível para a atividade. A outra maneira é o silenciamento indireto, que ocorre quando a metilação promove o recrutamento de proteínas ligadoras de metil-CpG que formam complexos repressores (CLOUAIRE; STANCHEVA, 2008).

1.4. Metilação do DNA, ancestralidade e melanogênese

Segundo (KADER; GHAI, 2017), os padrões de metilação podem variar de acordo com os fatores ambientais aos quais o indivíduo está submetido, bem como com a sua idade, dieta, status socioeconômico, tabagismo e até mesmo devido a polimorfismos genéticos, como os SNPs. Dessa forma, os níveis de metilação podem impactar na expressão de fenótipos morfológicos, comportamentais e de resposta a fármacos e ao ambiente. Ainda, os pesquisadores relatam que as variações epigenéticas como a metilação do DNA são importantes no papel de diferenciação não só a nível individual, mas também entre populações. Diferentes padrões de metilação podem ser observados em diferentes populações de diferentes ancestralidades biogeográficas, tanto a nível genômico quanto em genes e vias metabólicas específicas. Por exemplo, Heyn et al. (2013) descobriram que os promotores de genes abrigavam CpGs específicos de população (pop-CpGs). Essas pop-CpGs estavam associadas à variação existente entre as populações americanas de ancestralidade europeia, africana e chinesa estudadas. As diferenças foram localizadas principalmente em genes ligados ao metabolismo e transporte de xenobióticos (GSTT1 e SPATC1L), fatores de resposta imune (CERK, CD226, LCK e

28

SEPT8) e processamento e adaptação de informações ambientais (*ARNTL*, *PRSS3* e *CNR2*). Algumas pop-CpGs também foram associadas a genes relacionados a doenças nas populações, como doença de Parkinson de início precoce (*PM20D1*), infecção por HIV (*HIVEP3*, *HTATIP2*, *CDK11B*) e infecção pelo vírus do sarampo (*FYN*) (HEYN et al., 2013).

O controle genético da metilação do DNA ainda está associado a modificações de histonas e SNPs localizados em CpG específicos. As freguências dos alelos dos SNPs diferem consideravelmente entre populações com diferentes ancestralidades geográficas, sugerindo que as diferenças étnicas na metilação do DNA podem ser devidas às diferenças nos alelos ou haplótipos específicos da população que moldam e influenciam a estrutura dos sítios CpG e os níveis globais de metilação (CAPPETTA et al., 2015; FAGNY et al., 2015). Moen et al. (2013), por exemplo, observou que os indivíduos europeus exibiram maiores níveis de metilação nas regiões a 1 kb upstream dos locais de início da transcrição, enquanto que os africanos lorubás exibiram níveis elevados de metilação nas regiões de 3'UTRs. Uma correlação negativa entre a metilação do promotor de cg27270541 e os níveis de expressão foi observada para o gene PLA2G4C na população europeia, contrastando com altos níveis de expressão quando metilação elevada foi detectada no corpo do gene. O trabalho encontrou um total de 17.643 SNPs associados a 1.918 CpGs encontradas nas amostras africanas e 23.924 SNPs associados a 1.354 CpGs foram encontrados nas amostras europeias (MOEN et al., 2013). Em outro estudo, Frase et al., 2012 investigou o padrão de metilação de 27.578 sítios CpG próximos a sítios de início de transcrição de 14.495 genes, e verificou que um terço dos genes apresentam diferenças entre populações europeias e lorubas do projeto HapMap, podendo acarretar em perfis de expressão gênica distintos (FRASER et al., 2012).

De fato, diversos estudos apontam para diferenças nos níveis de metilação entre populações de diferentes ancestralidades. Assim, é possível que o metiloma venha até mesmo a ser utilizado para diferenciar populações, mas para isso é necessário cada vez mais compreender a influência ambiental e estilos de vida no estabelecimento dos níveis de metilação. Outra aplicação de suma importância é a relação entre a metilação e a susceptibilidade a doenças, como diversos tipos de canceres, diabetes, lúpus, entre outros. Em um recente estudo, foi determinada a sensibilidade da pele à radiação UV a partir dos padrões de metilação. A pesquisa concluiu que a exposição à radiação solar leva à desmetilação em diversas regiões do genoma, incluindo regiões envolvidas em vias de reparo ativadas por UV (HOLZSCHECK et al., 2020). Neste contexto, esperamos que os níveis de desmetilação sejam maiores na epiderme de indivíduos de ancestralidade predominantemente europeia e pele mais clara do que em miscigenados de pele mais pigmentada. Portanto, é possível que genes envolvidos na biossíntese de melanina estejam diferencialmente metilados quando diferentes indivíduos são comparados.

A melanogênese é regulada por diversos mecanismos epigenéticos, como a metilação do DNA, acetilação de histonas, modificações na cromatina e por RNAs não codificantes (ZHOU et al., 2021). Uma pesquisa em melanócitos humanos mostrou que a expressão do *MITF* é passível de ser regulada pela metilação. Diferenças estatisticamente significativas entre os perfis de metilação desse gene estão presentes entre os melanócitos, com maior valor de metilação nos melanócitos claros e menor nos melanócitos escuros. Este estudo confirmou a existência de correlações negativas entre a metilação das ilhas CpG no sítio de início de transcrição (TSS) dos genes *MITF*, *MLANA*, *TYR* e *Rab27a* e suas expressões gênicas (LAUSS et al., 2015). Outro estudo relatou a existência de fortes associações da variação da metilação do DNA em locais específicos e expressão gênica com fenótipos de pigmentação e SNPs associados ao câncer de pele, especialmente na região dos genes *MC1R* e *ASIP*, e concluiu que variantes polimórficas nestes genes podem influenciar como são regulados epigeneticamente, de modo a otimizar a resposta a ambientes de menor intensidade de luz solar (BONILLA et al., 2020).

Apesar das evidências de que a metilação influencia na pigmentação da pele e de que a pigmentação da pele influencia na metilação, a maioria dos estudos que obtiveram conclusões sobre os padrões de metilação em relação à pigmentação surpreendentemente utilizaram como amostras biológicas sangue e saliva. Poucos estudos citados até agora avaliaram marcadores em amostras originadas da pele.

Atualmente, não existem ferramentas de predição de pigmentação que incluam marcadores de metilação. Assim, esse trabalho objetiva estudar a relação existente entre a pigmentação, a metilação e SNPs presentes nos principais genes que participam do processo da melanogênese e nos demais genes representados em

ferramentas preditivas de pigmentação, para trazer novas contribuições ao campo da fenotipagem por DNA e compreensão do processo de origem da pigmentação.

1.5. Marcadores epigenéticos na identificação de fluidos e tecidos

Em se tratando de uma investigação criminal, a identificação do tipo de fluido ou tecido depositados em um local ou transferido para um indivíduo é de extrema importância. Sabendo-se a composição biológica de um vestígio encontrado, é possível elucidar qual tipo de crime pode ter ocorrido. Por exemplo, espera-se encontrar diferentes materiais em crimes de violação sexual, crimes contra a vida e em crimes contra o patrimônio. Assim, a identificação de sêmen ou fluido vaginal pode ser a prova necessária para comprovar a ocorrência de um crime de estupro. Bem como a presença de fragmentos de pele ou a identificação de sangue pode comprovar a ocorrência e ajudar na elucidação da dinâmica ocorrida em crimes de agressão e assassinato. Não apenas isso, mas a análise desses materiais pode levar à identificação de um suspeito, comprovando a autoria do delito e levando as pessoas certas à justiça.

No entanto, a identificação desses materiais biológicos nem sempre é fácil. Em uma cena de crime, todo material encontrado deve ser armazenado e processado com muito cuidado, para evitar contaminações e perda de vestígios. Após a coleta, existem muitas metodologias já estabelecidas para a identificação e diferenciação de fluidos e tecidos biológicos. A maioria das técnicas utilizadas no âmbito forense para essa finalidade são baseadas em análises de proteínas e enzimas específicas de cada tecido, como análise da fosfatase ácida (PA) e antígeno prostático específico (PSA) na identificação e sêmen e o teste de Kastle Meyer e luminol para sangue (HARBISON; FLEMING, 2016). Porém, esses testes podem ser difíceis de interpretar, são sujeitos a falsos positivos e precisam de quantidade considerável de material biológico, que nem sempre se encontra disponível no local.

Outras técnicas que ganharam destaque no campo forense para a identificação de tecidos se baseiam em análises de RNA mensageiro (mRNA) e microRNAs (miRNA) que apresentam um padrão de expressão tecido-específico resultante de necessidades e funções específicas desempenhadas por cada tipo celular (SIJEN, 2015). No entanto, essas moléculas são ainda menos estáveis que o DNA e podem ser facilmente degradadas, dificultando as análises. Nesse contexto, análises epigenéticas desses vestígios podem solucionar os problemas que vêm sendo encontrados. Assim, já foram identificados não só sítios CpG metilados diferencialmente, mas regiões metiladas diferencialmente específicas de tecido (tDMRs). Acredita-se que as tDMRs são responsáveis por gerar uma memória epigenética, estabelecendo padrões de hipo e hipermetilação específicos do tipo de célula, influenciando na ligação de fatores de transcrição (IGARASHI et al., 2008). Dessa forma, as tDMRs permitem a distinção entre tecidos e fluidos (RAKYAN et al., 2008; ZILLER et al., 2013), e esse fator, juntamente com o potencial para estimar a idade, vem sendo cada vez mais explorado na ciência forense.

O primeiro estudo forense sobre regiões metiladas diferencialmente específicas de tecidos foi realizado por Frumkim et al. (2011). O trabalho descreveu um ensaio baseado na metilação do DNA que permite a identificação de tecidos como sangue, saliva, sêmen e epiderme da pele. A proporção de níveis de metilação entre os loci L91762/L68346 foi menor no sêmen do que em todos os outros fluidos, assim como o alto valor na razão de metilação nos loci L91762/L68346 e L76138/L26688 nas amostras de epiderme da pele (FRUMKIN et al., 2011). Outro estudo, realizado por Madi et al. (2012), identificou vários sítios CpG presentes nos genes ZC3H12D, FGF7, BCAS4 e SOGA1 (previamente designado na literatura como C20orf117) que mostraram metilação diferencial entre amostras de saliva, sangue, sêmen e pele. Antunes et al. (2013) obtiveram achados semelhantes. O grupo trabalhou com diferentes fluidos corporais e identificaram 6 localizações genômicas capazes de distingui-los. Lee et al. (2016) desenvolveram um painel para diferenciar amostras de sangue, saliva, sêmen, fluido vaginal e sangue menstrual, permitindo a identificação positiva dessas cincos amostras utilizando 9 marcadores CpG que mostram sinal de metilação apenas nos fluidos corporais alvo (ANTUNES et al., 2013; LEE et al., 2016; MADI et al., 2012).

Em se tratando da identificação de pele, não foram encontrados trabalhos citando o impacto de diferentes tons de pigmentação nos marcadores utilizados para essa finalidade, bem como a busca por tDMRs em genes relacionados à pigmentação de pele, que podem ser úteis para essa finalidade. Esse tipo de estudo seria interessante visto a existência de relações entre a pigmentação da pele e a metilação

do DNA, em especial em populações altamente miscigenadas como a brasileira, as quais apresentam uma ampla diversidade de fenótipos de pigmentação. Levar em consideração esse fator pode contribuir de maneira mais efetiva para a identificação dos tecidos em uma investigação. Assim, dado o grande interesse forense de identificação de fluidos e tecidos a partir de padrões de metilação, o presente trabalho também se propõe a analisar o perfil de metilação diferencial de um conjunto de marcadores de genes de pigmentação em diferentes tipos de células presentes no tecido epitelial e em leucócitos de sangue.

2. Justificativa

Na área forense, os estudos de biologia molecular envolvendo amostras de tecido epitelial têm ganhado cada vez mais importância. Apesar dos casos criminais serem comumente relacionados a amostras de sangue e sêmen, grande parte do DNA obtido nos locais de crime na atualidade derivam de células do epitélio, incluindo principalmente o chamado de DNA de toque ou *touch DNA*.

Em 2016, Chemale et al. publicaram os dados obtidos pelo Laboratório de Genética Forense da Polícia Federal do Brasil. Resultados de 4200 amostras analisadas pela equipe foram apresentados, demonstrando que 45,79% das amostras analisadas entre 2011-2016 foram típicas de DNA de toque, isto é, amostras de células epiteliais descamadas coletadas com suabe em suportes diversos. Além disso, 22,81% das amostras derivavam de peças de vestuário, que também são fontes de células epiteliais aderidas a materiais têxteis. Portanto, cerca de 68% das amostras analisadas no laboratório de DNA da Polícia Federal nesse período possuíam origem epitelial. No estudo em questão, os casos analisados se tratavam de crimes contra o patrimônio. Entretanto, a investigação de outros tipos criminais também pode se beneficiar de estudos que utilizam células epiteliais como fonte de DNA de toque (CHEMALE et al., 2016).

No caso de crimes sexuais, por exemplo, estudos já constataram a presença de células epiteliais contendo DNA amplificável em amostras coletadas das vítimas (MCDONALD et al., 2015). Células epiteliais masculinas podem ser transferidas para a vagina durante a relação sexual vaginal sem ejaculação e o DNA masculino pode ser detectado posteriormente. Também é possível que a transferência de células epiteliais do agressor para a vítima se dê por penetração dos dedos ou por arranhões cometidos por parte da vítima. O XVIII Relatório Semestral da Rede Integrada de Bancos de Perfis Genéticos (2023) mostrou que os crimes que mais contribuem com a produção de perfis genéticos nos laboratórios de genética forense brasileiros são os crimes sexuais (40,5%) e os crimes contra o patrimônio (38,0%).

Esses fatos demonstram que o uso do DNA oriundo de células epiteliais para fins de investigação criminal é algo de grande relevância tendo em vista a realidade das investigações policiais no Brasil e no mundo. Por isso, é importante estudos que visem identificar e diferenciar essas amostras obtidas em contexto criminal. Um campo de estudos que vem ganhando destaque é a epigenética forense, que possui entre seus objetivos a identificação do tipo celular a partir de mudanças químicas que ocorrem no genoma, como a metilação de ilhas CpGs.

Além disso, o estudo da metilação dos genes envolvidos na melanogênese pode ser um grande passo para o uso da fenotipagem forense por DNA no Brasil. Uma das causas da baixa acurácia dos sistemas de predição de pigmentação da pele pode estar relacionada à metilação diferencial de regiões promotoras dos genes de pigmentação e seu impacto no processo de regulação da expressão gênica, o que poderia explicar um fenótipo discrepante em relação ao predito pela constituição genotípica do indivíduo.

Considerando que: (a) o DNA de toque pode ser imprescindível para identificação criminal, (b) a fenotipagem forense à partir de SNPs pode ser uma estratégia fundamental para o direcionamento das investigações, mas ainda precisa ser melhor desenvolvida, (c) os resultados das ferramentas de predição podem ser influenciados pelos padrões de expressão gênica, os quais variam entre indivíduos de diferentes ancestralidades biogeográficas, e (d) os padrões de expressão gênica são diferentes em diferentes tecidos, é de interesse forense que estudos de marcadores epigenéticos relacionados à pigmentação sejam realizados nos diferentes tipos celulares que compõem a pele.
3. Hipótese

Tem-se por hipótese principal que os perfis de metilação de genes envolvidos na biossíntese de melanina diferem entre melanócitos provenientes de peles com diferentes intensidades de pigmentação, o que poderia interferir na predição de fenótipos a partir de genótipos. Como hipótese adicional, consideramos que os níveis de metilação de marcadores epigenéticos previamente propostos para identificação tecidual, ou mesmo dos genes de pigmentação aqui estudados, diferem entre os tipos celulares da pele humana, o que poderia prejudicar seu emprego na rotina forense de identificação de fluidos e tecidos.

4. Objetivos

4. Objetivos

4.1. Objetivo geral

O objetivo geral deste projeto consiste em analisar perfis de metilação dos genes relacionados à pigmentação em amostras de melanócitos claros, intermediários e escuros, utilizando dados de metilação em escala genômica disponíveis em repositórios de acesso público, a fim de avaliar a metilação no processo de melanogênese e sua relação com as ferramentas de fenotipagem forense por DNA.

Além disso, outro objetivo é avaliar se os marcadores epigenéticos de genes de pigmentação são capazes de diferenciar células de melanócitos em relação aos demais tipos celulares da pele humana.

4.2. Objetivos específicos

Como objetivos específicos, propõe-se:

- Avaliar a diferença entre perfis de metilação dos genes selecionados entre melanócitos claros, intermediários e escuros;
- Avaliar a diferença dos perfis de metilação dos genes selecionados entre diferentes tipos celulares da pele humana;
- Avaliar a diferença dos perfis de metilação dos genes selecionados entre tipos celulares da pele humana e leucócitos;
- Avaliar a distribuição das frequências alélicas de SNPs presentes em ilhas
 CpGs em populações europeias e africanas do projeto 1000 Genomes,
 realizando uma associação indireta entre alelos e pigmentação da pele.

5. Materiais e Métodos

Para atender aos objetivos do projeto, o trabalho contou com dois principais caminhos de investigação (Figura 3). O primeiro (detalhado no item 5.1) foi a análise de dados de metilação entre amostras de diferentes tipos celulares, para encontrar CpGs que possam estar envolvidas na pigmentação da pele e que apresentem níveis de metilação distintos entre diferentes tipos celulares. O segundo caminho (detalhado no item 5.2) foi analisar SNPs que se encontram em ilhas CpG, para encontrar relações entre esses polimorfismos, metilação e pigmentação da pele humana.

Em ambas as abordagens foram utilizados dados provenientes de bancos de livre acesso. Detalhes sobre a obtenção, descrição e análise dos dados se encontram nos itens a seguir.

Figura 3. Fluxograma das etapas seguidas nos materiais e métodos.

Tanto nas análises de metilação do DNA quanto nas análises dos polimorfismos genéticos, foram estudados os genes já utilizados na ferramenta preditiva HIrisPlex-S (os quais, portanto, já possuem uma prévia associação com a pigmentação), além dos genes *MITF* e *POMC*, que possuem papel estabelecido na melanogênese e não estão presentes na ferramenta preditiva. No total, foram analisados 21 genes. Segue abaixo uma pequena descrição de cada um deles:

ANKRD11 (ankyrin repeat domain containing 11): está localizado na região cromossômica 16q24.3, a aproximadamente 425kb de distância do gene *MC1R*. De acordo com sua sequência RefSeq (NM_013275), possui 222.132pb e 13 éxons. Mutações neste gene têm sido associadas à síndrome KBG, que é caracterizada por macrodontia, características craniofaciais distintas, baixa estatura, anomalias esqueléticas, atraso global no desenvolvimento, convulsões e deficiência intelectual (LIM et al., 2014). Aparentemente está relacionado à cor da pelagem em bovinos (HE et al., 2022).

ASIP (agouti signaling protein): está localizado na região cromossômica 20q11.2q12. De acordo com sua sequência RefSeq (NG_011439.1), possui 8.978pb, 3 éxons e codifica uma proteína composta por 132 aminoácidos, que consiste em ligante inibidor do receptor codificado pelo gene *MC1R* (antagonista do hormônio *MSH*). Devido essa interação, é descrito como antagonista da síntese de eumelanina (VOISEY et al., 2006).

BNC2 (basonuclin 2): está localizado na região cromossômica 9p22.2. De acordo com sua sequência RefSeq (NG_051226), possui 461.168pb e 7 éxons, codificando proteína *zinc finger protein basonuclin-2* de 1.099 aminoácidos. Esta proteína consiste em potencial regulador transcricional em queratinócitos, e seu papel na determinação da pigmentação em peixes paulistinha (*Zebrafish*) e em camundongos é conhecido há anos (LIU; WEN; KAYSER, 2013).

DEF8 (differentially expressed in FDCP 8 homolog): está localizado na região 16q24.3, a aproximadamente 14,8kb de distância do gene *MC1R*. De acordo com a sequência RefSeq NM_001242818, possui 19.306pb e 13 éxons. Recentemente, o DEF8 foi proposto como participante do tráfego vesicular, das vias de autofagia e relacionado a doença de Alzheimer (OYARCE-PEZOA et al., 2023). Foi recentemente associado com pigmentação e ceratoses actínicas (AKs), que são neoplasias

derivadas de queratinócitos que surgem na pele exposta à radiação ultravioleta (UV) crônica (KIM et al., 2022).

HERC2 (HECT and RLD domain containing E3 ubiquitin protein ligase 2): está localizado na região cromossômica 15q13, à montante (*upstream*) em relação ao gene *OCA2*. De acordo com sua sequência RefSeq (NG_016355.1), possui 211.116pb, 93 éxons e codifica a proteína E3 ubiquitin-protein ligase HERC2 composta por 4.834 aminoácidos. Este gene atuaria na regulação da expressão do gene *OCA2* (DONNELLY et al., 2012).

IRF4 (interferon regulatory factor 4): está localizado na região cromossômica 6p25p23. De acordo com sua sequência RefSeq (NG_027728.1), possui 19.705pb, 9 éxons e codifica ao menos 2 isoformas proteicas compostas por 451 (isoforma 1) ou 450 (isoforma 2) aminoácidos. Tal proteína consiste em fator de transcrição expresso em melanócitos, e cuja expressão é ativada pelo produto do gene *MITF*. Ambos ativam cooperativamente a expressão de tirosinase (PRAETORIUS et al., 2014).

KITLG (KIT ligand): está localizado na região cromossômica 12q22. De acordo com sua sequência RefSeq (NG_012098.1), possui 87.681pb, 10 éxons e codifica ao menos 2 isoformas proteicas compostas por 245 (isoforma a) ou 273 (isoforma b) aminoácidos. Tal proteína consiste em ligante pleiotrópico que influencia a proliferação de melanócitos e a distribuição de melanina, além de ativar queratinócitos a produzirem fatores pró-melanogênicos (PICARDO; CARDINALI, 2011).

LOC105370627: está localizado na região cromossômica 14q32.12, a cerca de 3kb do gene *SLC24A4*. De acordo com sua sequência depositada no NCBI (Gene ID: 105370627), possui 15.237pb, 3 éxons e codifica o RNA não-codificante longo (IncRNA) XR_007084453.1, de 1.055 nucleotídeos, cuja função é desconhecida.

LOC105374875: está localizado na região cromossômica 6p25.3, a cerca de 42kb do gene *IRF4*. De acordo com sua sequência depositada no NCBI (Gene ID: 105374875), possui 24.439pb, 3 éxons e codifica o RNA não-codificante longo (IncRNA) XR_001743914.1, de 2.957 nucleotídeos. Embora expresso na pele, sua função é desconhecida.

MC1R (melanocortin 1 receptor): está localizado na região cromossômica 16q24.3. De acordo com sua sequência RefSeq (NG_012026.1), possui 3.099pb, 1 único éxon

e codifica proteína de membrana composta por 317 aminoácidos. Tal proteína consiste em receptor para o *alpha melanocyte-stimulating hormone (MSH*), sendo que a ligação de tal hormônio estimula a síntese de eumelanina. Mutações neste gene estão associadas a aumento da produção de feomelanina, além de pele e cabelos claros (BRANICKI et al., 2007).

MITF (*microphthalmia-associated transcription factor*): está localizado na região cromossômica 3p14.2-p14.1. De acordo com sua sequência RefSeq (NG_011631.1), possui 228.903pb, 15 éxons e codifica ao menos 8 isoformas proteicas que variam de 91 (isoforma 8) a 520 (isoforma 1) aminoácidos. Tal proteína constitui fator de transcrição que regula a expressão de diversas enzimas (TYR, DCT e TYRP1, entre outras) que atuam na melanogênese. Mutações neste gene resultam em síndromes auditivo-pigmentares (LIU; FISHER, 2010).

OCA2 (oculocutaneous albinism II): está localizado na região cromossômica 15q. De acordo com sua sequência RefSeq (NG_009846.1), possui 344.438pb, 24 éxons e codifica proteína transmembrana melanossomal conhecida como *P protein* composta por 838 aminoácidos. Acredita-se que tal proteína esteja envolvida no transporte de tirosina para o interior dos melanossomos, podendo também atuar na regulação do pH destas organelas. Mutações neste gene resultam em albinismo oculocutâneo tipo 2 (DONNELLY et al., 2012).

PIGU (phosphatidylinositol glycan anchor biosynthesis class U): está localizado na região cromossômica 20q11.22, a cerca de 290kb do gene *ASIP*. De acordo com sua sequência RefSeq (NC_000020.11), possui 116.551 pb e 12 éxons. A proteína codificada por este gene está relacionada ao controle da divisão celular (WEI et al., 2020).

POMC (proopiomelanocortin): está localizado na região cromossômica 2p23.3. De acordo com sua sequência RefSeq (NG_008997.1), possui 7.721 pb e 3 éxons. A proteína precursora produz peptídeos através de uma série de etapas enzimáticas de maneira específica de tecido, produzindo os hormônios estimuladores de melanócitos (MSHs), corticotrofina (ACTH) e β -endorfina (MILLINGTON, 2006).

RALY (heterogeneous nuclear ribonucleoprotein): está localizado na região cromossômica 20q11.22, a cerca de 150kb do gene *ASIP*. De acordo com sua sequência RefSeq (GCF_000001405.40-RS_2023_10), possui 90.974 pb e 10 éxons.

Foi inicialmente identificado em complexos spliceossômicos, indicando que um papel no *splicing* de RNA (LIANG et al., 2022).

SLC24A4 (*solute carrier family 24, member 4*): está localizado na região cromossômica 14q32.12. De acordo com sua sequência RefSeq (NG_023408.1), possui 178.901pb, 17 éxons e codifica ao menos três isoformas da proteína transmembrana *sodium/potassium/calcium exchanger 4* (*NCKX4*), composta por 622 (isoforma 1), 603 (isoforma 2) ou 558 (isoforma 3) aminoácidos. Tal proteína é membro da mesma família de transportadores de sódio/cálcio dependente de potássio a qual pertence o gene *SLC24A5* (LIU; WEN; KAYSER, 2013).

SLC24A5 (solute carrier family 24, member 5): está localizado na região cromossômica 15q21.1. De acordo com sua sequência RefSeq (NG_011500.1), possui 21.421pb, 9 éxons e codifica a proteína transmembrana *melanossomal sodium/potassium/calcium exchanger 5 (NCKX5)* de 500 aminoácidos. Tal proteína é membro de uma família de transportadores de sódio/cálcio dependente de potássio, sendo imprescindível para a regulação dos níveis de cálcio e maturação dos melanossomos, podendo também atuar na regulação do pH destas organelas (QUILLEN; SHRIVER, 2008).

SLC45A2 (solute carrier family 45, member 2): está localizado na região cromossômica 5p13.2. De acordo com sua sequência RefSeq (NG_011691.1), possui 40.060pb, 7 éxons e codifica ao menos 2 isoformas de proteína transmembrana melanossomal conhecida como membrane-associated transporter protein (MATP) ou melanoma antigen AIM1, composta por 530 (isoforma a) ou 460 (isoforma b) aminoácidos. Acredita-se que tal proteína esteja envolvida no transporte de tirosinase e prótons para o interior dos melanossomos. Mutações resultam em albinismo oculocutâneo tipo 4 (YUASA et al., 2006).

TUBB3 (tubulin beta 3 class III): está localizado na região cromossômica 16q24.3, a cerca de 2,3kb do gene *MC1R*. De acordo com sua sequência RefSeq (NG_027810.1), possui 12.756 pb e 4 éxons. Este gene codifica um membro de classe III da família de proteínas beta tubulina. Além disso, possui uma função primária no desenvolvimento do sistema nervoso e na geração e manutenção de axônios, devido ao seu padrão de expressão específico de neurônios (DENTICI et al., 2020).

TYR (tyrosinase): está localizado na região cromossômica 11q14-q21. De acordo com sua sequência RefSeq (NG_008748.1), possui 122.888pb, 5 éxons e codifica a enzima composta por 529 aminoácidos. Tal proteína catalisa os dois primeiros passos da conversão de tirosina em melanina, além de atuar em uma etapa final da biossíntese de eumelanina. Mutações neste gene resultam em albinismo oculocutâneo tipo 1 (BAE-HARBOE; PARK, 2012).

TYRP1 (tyrosinase-related protein 1): está localizado na região cromossômica 9p23. De acordo com sua sequência RefSeq (NG_011705.1), possui 21.881pb, 8 éxons e codifica a proteína *5,6-dihydroxyindole-2-carboxylic acid oxidase* composta por 537 aminoácidos. Tal proteína consiste em enzima melanossomal pertencente à família da tirosinase, atuando em etapa final da via de biossíntese ao oxidar o DHICA em eumelanina. Mutações neste gene resultam em albinismo oculocutâneo tipo 3 (KENNY et al., 2012).

5.1. Dados de metilação

Para a primeira abordagem, o *Gene Expression Omnibus* (GEO, <u>http://www.ncbi.nlm.nih.gov/geo/</u>), um banco de dados internacional baseado em experimentos funcionais em escala genômica, foi explorado em busca de amostras adequadas para o presente estudo. Nesse banco, existem dados de amostras utilizadas em trabalhos publicados previamente, que podem ser facilmente acessados por outros pesquisadores. Dessa forma, foi feita uma busca de conjuntos de dados que incluíssem amostras de interesse para o objetivo do projeto. O conjunto de dados GSE74877 foi selecionado, por conter dados de metilação em diferentes tipos celulares de pele, gerado no contexto de estudo sobre o papel da metilação na regulação do gene *MITF* (HOLM et al., 2016).

De acordo com os responsáveis pelos dados, a análise de metilação foi realizada utilizando o *Infinium Human Methylation 450K BeadChip*, da Illumina. Uma amostra de cada um dos seguintes tipos celulares foi analisada: melanócitos claros, melanócitos escuros, melanócitos intermediários, queratinócitos epidérmicos, fibroblastos dérmicos e leucócitos de sangue periférico, todas cultivadas em

laboratório. A amostra de sangue foi obtida comercialmente junto à Promega (https://www.promega.com.br/) e as demais junto à companhia ScienCell Research Laboratories (https://www.sciencellonline.com/). Ainda, a amostra de melanócitos claros é descrita como sendo proveniente de tecido de pele caucasiana, a de melanócitos intermediários de indivíduo de ascendência asiática/nativa americana e a de escuros de indivíduo de ascendência africana.

O conjunto de dados GSE74877 fornece os arquivos brutos, em formato .idat, gerado pela análise do *Infinium Human Methylation 450K* na plataforma *HiScanSQ* (Illumina) e posterior análise pelo software GenomeStudio (Illumina). Para a análise do DNA metilado, uma etapa inicial envolve o tratamento do material genético com bissulfito de sódio, que converte as citosinas não metiladas em uracilas. As citosinas metiladas permanecem como citosinas no código genético, e dessa forma é possível identificar quais estavam metiladas. O conjunto de dados em questão usou desse procedimento e posteriormente seguiu com a amplificação, fragmentação e hibridização pelo ensaio da Illumina usando seu protocolo padrão. As intensidades dos sinais foram obtidas pelo software GenomeStudio, que deu origem aos arquivos .idat.

Com exceção da amostra de leucócito, todas as outras possuem dados de duplicatas. Esses arquivos foram então baixados do banco de dados e foram organizados para análise. Para isso, foram criados arquivos .pheno que indicam quais amostras correspondem a quais arquivos .idat e determinam seus respectivos grupos. Três análises foram realizadas: (1) entre os diferentes tons de melanócitos, em que os grupos foram "melanócitos claros, intermediários e escuros"; (2) entre os tipos celulares da pele, em que os grupos foram "melanócitos, fibroblastos, queratinócitos e leucócitos de sangue periférico"; e (3) entre "sangue e pele".

Para as análises propriamente ditas foi utilizado o pacote ChAMP (MORRIS et al., 2014) em ambiente R. A partir do ChAMP foi possível obter uma matriz com valor beta para cada sonda CpG presente no ensaio 450K; o valor beta consiste basicamente na porcentagem de DNA metilado. Para isso, é feita uma razão entre as citosinas metiladas e a quantidade total, isto é, metiladas e não metiladas. É possível realizar essa quantificação pela quantidade de bases citosinas (previamente metiladas) e uracilas (citosinas desmetiladas anteriormente) após a conversão de bissulfito. O valor beta é o principal parâmetro utilizado em estudos de metilação, visto

que possui uma interpretação biológica de fácil entendimento, em que os valores variam de 0 (DNA totalmente desmetilado) a 1 (totalmente metilado) (DU et al., 2010).

A partir dos valores beta de metilação foi possível identificar sondas diferencialmente metiladas (DMPs), ou seja, CpGs que apresentam diferença estatística no nível de metilação entre as amostras comparadas. A função champ.DMP foi utilizada para selecionar as DMPs com valores de *p* menores que 0,05, após o ajuste de Benjamini-Hochberg (BENJAMINI; HOCHBERG, 1995). Esse ajuste para a taxa de falsa descoberta (FDR) foi utilizada nas análises deste trabalho por ser menos conservativo do que a comumente utilizada correção de Bonferroni para múltiplos testes. Dessa forma, espera-se diminuir os erros tipo do I, ou seja, a rejeição equivocada de uma hipótese nula realmente verdadeira.

A ferramenta ainda fornece informações sobre a posição de cada CpG. Como, por exemplo, em qual gene ela se encontra; se está contida em um elemento intensificador; se faz parte de uma ilha CpG; quais são os SNPs próximos; entre outras informações.

A partir do próprio software foram gerados gráficos para cada gene contendo o nível de metilação das DMPs entre as amostras estudadas. É possível visualizar se a DMP se encontra em uma CGI propriamente dita, em *shore* (até 2 kb da CGI), *shelf* (2 a 4 kb da CGI) ou *opensea* (a mais de 4 kb da CGI). Além disso, é informado se a DMP se encontra em região 5'UTR, 3'UTR, primeiro éxon, próxima (*upstream*) ao sítio de início de transcrição (1,5 kb a 200 pb do sítio, TSS1500, ou a menos de 200 pb, TSS200) ou no restante do corpo do gene, ou seja, fora da região promotora e UTRs.

Posteriormente, foi realizada a análise para a obtenção de regiões diferencialmente metiladas (DMRs). Enquanto as DMPs são CpGs individuais com diferença significativa de metilação entre amostras, as DMRs correspondem a regiões genômicas com diversas CpGs que possuem diferentes status de metilação de DNA em diferentes amostras biológicas. As DMRs são consideradas como possíveis regiões funcionais envolvidas na regulação da transcrição gênica (CHEN; LIN; FANN, 2016). A função champ.DMR foi utilizada para encontrar DMRs entre as amostras utilizando o método Bumphunter, que realiza um agrupamento das sondas em clusters e depois aplica uma permutação aleatória para estimar as DMRs (JAFFE et al., 2012).

5.1.1. Diferenciação entre melanócitos

Na busca por um melhor entendimento das diferenças entre os tipos de melanócitos e a possível regulação epigenética dos 21 genes de interesse, ou seja, aqueles relacionados à pigmentação e utilizados nas ferramentas preditivas para fenotipagem forense, as amostras de melanócitos foram analisadas separando-se em grupos (duplicatas) de melanócitos claros, melanócitos intermediários e melanócitos escuros.

Após uma observação prévia dos dados plotados pelo próprio ChAMP, foram feitos gráficos pelo Microsoft Excel 2019 para melhor destacar as regiões e CpGs de interesse.

5.1.2. Diferenciação entre tipos celulares

Da mesma forma foram analisados os tipos celulares para obtenção de CpGs capazes de realizar sua identificação e diferenciação. Como o foco do trabalho é a pigmentação da pele, foram realizadas análises entre os melanócitos (em conjunto) e os demais tipos celulares. Assim, buscou-se a diferenciação entre melanócitos e fibroblastos, melanócitos e queratinócitos e entre melanócitos e leucócitos de sangue periférico. Após as análises, os valores betas para as DMPs de todas as comparações foram plotados em gráficos utilizando o Microsoft Excel 2019.

Além da análise dos 21 genes de interesse, outros marcadores previamente propostos para serem utilizados em casos forenses para diferenciar a amostra de sangue de amostras de outros fluidos e tecidos tiveram seus níveis de metilação comparados entre os tipos celulares aqui estudados. Para isso, foram analisados marcadores previamente estabelecidos, como as CpGs contidas no gene *SOGA1* e as CpGs cg06379435 e cg08792630 para a diferenciação do sangue em relação às demais amostras (LEE et al., 2016; MADI et al., 2012).

5.2. Seleção de polimorfismos presentes em CGI e proximidades

5.2.1. SNPs presentes no sistema HIrisPlex-S

Antes de realizar uma análise de associação com a pigmentação, uma busca inicial foi feita com base nos 41 polimorfismos presentes no sistema preditivo HIrisPlex-S (Tabela 1), a fim de saber quais SNPs utilizados na ferramenta se encontram em CGIs ou em regiões adjacentes, isto é, *shore* (até 2 kb da CGI), *shelf* (2 a 4 kb da CGI) ou *opensea* (a mais de 4 kb da CGI), e assim tentar encontrar uma relação com a metilação de CpGs. Essa etapa é importante, pois muitos polimorfismos utilizados nas predições ainda não têm uma função elucidada no processo de definição da pigmentação. Assim, uma relação com a epigenética poderia ajudar nessa questão e auxiliar a encontrar outros SNPs que sejam capazes de melhorar os modelos preditivos.

Após anotar quais dos SNPs do HIrisPlex-S se encontram de fato em ilhas CpGs, a ferramenta LD Link (https://ldlink.nih.gov/) foi utilizada na sua função LDproxy para avaliar se os demais SNPs da ferramenta HIrisPlex-S possuem forte desequilíbrio de ligação com outros SNPs não inclusos na ferramenta, mas que estejam em CGIs (MACHIELA; CHANOCK, 2015). Com base no padrão de desequilíbrio de ligação em populações do projeto 1000 Genomes (AUTON et al., 2015) e interação com o banco de anotações funcionais RegulomeDB (BOYLE et al., 2012), o LDproxy explora tagSNPs supostamente funcionais para uma variante consultada. Por fim, os SNPs tidos como de interesse (do próprio HIrisPlex-S que estejam em CGI e outros tagSNPs em LD) foram genotipados nas populações do projeto 1000 Genomes para realizar posteriormente análises de associação indireta.

51

Gene	SNP	Alelos	Gene	SNP	Alelos
ANKRD11	rs3114908	T > A, C, G	MC1R	rs2228479	G > A, C
ASIP	rs6119471	C > A, G	MC1R	rs1110400	T > C
BNC2	rs10756819	G > A, C, T	MC1R	rs3212355	C > T
DEF8	rs8051733	A > G	OCA2	rs1800407	C > T
HERC2	rs12913832	A > C, G	OCA2	rs1800414	T > A, C
HERC2	rs2238289	A > G	OCA2	rs1470608	G > A, C, T
HERC2	rs6497292	A > G	OCA2	rs1545397	A > T
HERC2	rs1129038	C > T	OCA2	rs12441727	G > A, C
HERC2	rs1667394	C > A, T	PIGU	rs2378249	G > A, C
IRF4	rs12203592	C > G, T	RALY	rs6059655	A > G
KITLG	rs12821256	T > A, C, G	SLC24A4	rs2402130	G > A, C, T
LOC105370627	rs12896399	G > A, T	SLC24A4	rs17128291	A > G
LOC105374875	rs4959270	C > A, G, T	SLC24A5	rs1426654	A > G, T
MC1R	rs312262906	A > -, AA	SLC45A2	rs28777	C > A, G
MC1R	rs11547464	G > A	SLC45A2	rs16891982	C > A, G
MC1R	rs885479	G > A, C	TUBB3	rs1805009	G > A, C
MC1R	rs1805008	C > T	TYR	rs1042602	C > A
MC1R	rs1805005	G > T	TYR	rs1393350	G > A
MC1R	rs1805006	C > A, G	TYR	rs1126809	G > A
MC1R	rs1805007	C > A, G, T	TYRP1	rs683	C > A
MC1R	rs201326893	C > A			

Tabela 1. SNPs presentes no sistema preditivo HIrisPlex-S.

5.2.2. Genótipos obtidos pelo projeto 1000 Genomes

Para estudar um pouco melhor a relação entre os polimorfismos genéticos e a metilação do DNA, uma abordagem populacional alternativa também foi adotada. Foram listadas todas as CGIs que se encontram presentes nos genes de interesse e a 100 mil pares de bases *upstream* e *downstream* de tais genes, a fim de abranger também as regiões próximas. Os genes de interesse são os mesmos 21 analisados nas amostras celulares para a metilação, isto é, aqueles representados na ferramenta preditiva HIrisPlex-S e incluídos os genes *MITF* e *POMC*.

As CGIs foram selecionadas a partir do manifesto referente ao ensaio Illumina Infinium Human Methylation 450k Beadchip (disponível em https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchi p_kit/downloads.html), bem como do banco de dados UCSC Genome Browser (KENT et al., 2002). Para isso, as coordenadas de cada gene foram definidas a partir de busca no UCSC Genome Browser (https://genome.ucsc.edu/). Em seguida, buscouse no manifesto do ensaio de metilação as CGIs presentes no intervalo de 100 kb upstream e downstream de cada gene. A partir do banco de dados do projeto 1000 Genomes, os genótipos de 3380 marcadores presentes nessas CGIs foram recuperados utilizando o software Tabix (LI, 2011) em ambiente Linux, resultando em arquivos brutos em formato .vcf.

Os dados foram obtidos do painel faseado de alta cobertura do Projeto 1000 Genomes (2022) (BYRSKA-BISHOP et al., 2022), que inclui SNVs (*Single Nucleotide Variants*), InDels e SV (*Structural Variants*: grandes deleções, grandes inserções, duplicações e inversões) em 3.202 amostras de 5 grupos populacionais, contendo 26 populações (Figura 4; Tabela 2).

Figura 4. Populações de origem das amostras do projeto 1000 Genomes.

Grupo populacional	População	Descrição	Indivíduos amostrados
	CEU	CEPH* Collection	179
	IBS	Iberian Populations in Spain	157
EUR	GBR	British From England and Scotland	91
(Europe)	FIN	Finnish in Finland	99
	TSI	Toscani in Italia	107
	Total	-	633
	GWD	Gambian in Western Division - Mandinka	178
	MSL	Mende in Sierra Leone	99
AFR	ESN	Esan in Nigeria	149
(Africa)	YRI	Yoruba in Ibadan, Nigeria	178
	LWK	Luhya in Webuye, Kenya	99
	Total	-	703
	CHB	Han Chinese South	103
	JPT	Japanese in Tokyo, Japan	104
EAS	CHS	Han Chinese South	163
(East Asia)	CDX	Chinese Dai in Xishuangbanna, China	93
	KHV	Kinh in Ho Chi Minh City, Vietnam	122
	Total	-	585
	GIH	Gujarati Indian in Houston, Texas, USA	103
	STU	Sri Lankan Tamil in the UK	114
SAS	ITU	Indian Telugu in the UK	107
(South Asia)	PJL	Punjabi in Lahore, Pakistan	146
	BEB	Bengali in Bangladesh	131
	Total	-	601
	ASW	African Ancestry in SW USA	74
	MXL	Mexian Ancestry in Los Angeles CA USA	97
AMR	PUR	Puerto Rican in Puerto Rico	139
(Admixed	ACB	African Caribbean in Barbados	116
Americans)	CLM	Colombian in Medellín, Colombia	132
	PEL	Peruvian in Lima Peru	122
	Total	-	680

Tabela 2. Descrição das populações e número de indivíduos amostrados no projeto 1000 Genomes.

* The Centre d'Etude du Polymorphisme Humain

Também foram realizadas análises de desequilíbrio de ligação entre todos os SNPs nas CGIs dos genes selecionados utilizando-se o software HaploView 4.2 (BARRETT et al., 2005). Para tanto, os arquivos brutos do projeto 1000 Genomes foram filtrados a fim de deixar apenas os SNPs bialélicos, reduzindo o número total de marcadores para 1760 SNPs, e separar os indivíduos de acordo com seu grupo populacional (EUR, AFR, AMR). Após a separação dos grupos populacionais, foram retirados os marcadores que se apresentaram monomórficos em cada um deles, de forma que o número de SNPs analisados passou a ser diferente para cada grupo populacional.

Para gerar os blocos de haplótipos foi utilizado o método de intervalos de confiança disponível como padrão no HaploView (GABRIEL et al., 2002). Nesse método, são gerados intervalos de confiança de 95% para valores de *D*' entre cada par de SNPs, e cada comparação é definida como de "LD forte", "inconclusiva" ou de "recombinação forte". Um bloco de haplótipo é criado se 95% das comparações informativas (ou seja, desconsiderando-se as inconclusivas) forem definidas como "LD forte".

Foram realizadas também análises de associação indireta entre SNPs e fenótipos de pigmentação da pele esperados em três grupos populacionais do projeto 1000 Genomes: EUR (pele clara), EAS (pele intermediária) e AFR (pele escura). Para isso, foram utilizados os genótipos dos 1760 SNPs bialélicos presentes em CGIs no intervalo de 100 kb *upstream* e *downstream* de cada gene estudado (incluindo 5 SNPs da ferramenta HIrisPlex-S), dos 3 SNPs (tagSNPs) recuperados conforme descrito na seção 5.2.1 (incluindo 1 SNP da ferramenta HIrisPlex-S) e dos demais 35 SNPs do sistema HIrisPlex-S, totalizando 1798 polimorfismos. Dos marcadores presente no HIrisPlex-S, não foi possível a genotipagem de dois deles: a InDel rs312262906 (*MC1R*) e o SNP rs201326893 (*MC1R*, em CGI), ambos com alelos alternativos encontrados apenas em populações europeias e euro-derivadas, com frequências inferiores a 1% (de acordo com levantamento realizado junto ao dbSNP) (SHERRY et al., 2001).

As análises de associação envolvendo genótipos foram feitas utilizando o software PLINK v1.07 (PURCELL et al., 2007), realizando comparações entre os indivíduos provenientes de população africana (AFR) versus europeia (EUR), africana (AFR) versus leste asiática (EAS) e europeia (EUR) versus leste asiática (EAS). O programa retorna os valores de probabilidade (*p*) de cada análise, bem como os valores ajustados pelas correções de Bonferroni e Benjamini-Hochberg.

6. Resultados e Discussão

6.1. Metilação, tons de melanócitos e diferenciação celular

6.1.2. Metilação e pigmentação dos melanócitos

Buscando encontrar relações entre a metilação e a diferença de pigmentação da pele, os três diferentes tipos de melanócitos foram estudados. Assim, análises estatísticas foram feitas comparando as três amostras de melanócitos entre si para encontrar as CpGs que apresentam diferença no nível de metilação entre eles. Na comparação entre melanócitos escuros e claros, 162 CpGs se apresentaram diferencialmente metiladas nos 21 genes estudados. Na análise entre os escuros e os intermediários foram encontradas 148 DMPs nos genes de interesse. Já para a análise entre os melanócitos claros e intermediários foram encontradas 73 DMPs. No total, 305 DMPs diferentes foram encontradas após o ajuste de Benjamini-Hochberg no valor de p (Figura 5; Tabela 3; Apêndice B).

Figura 5. Número de DMPs encontradas nas análises entre melanócitos escuros e claros (E x C), escuros e intermediários (E x I) e entre claros e intermediários (C x I).

Gene	Total DMPs	Escuros vs. Claros	Escuros vs. Intermediários	Claros vs. Intermediários
ANKRD11	88	39	45	16
ASIP	5	3	5	2
BNC2	13	7	5	2
DEF8	13	5	8	-
HERC2	23	10	12	5
IRF4	8	3	4	3
KITLG	14	7	7	6
LOC105370627	-	-	-	-
LOC105374875	-	-	-	-
MC1R	7	7	6	3
MITF	19	16	12	7
OCA2	48	23	21	16
PIGU	6	3	2	2
POMC	16	16	-	-
RALY	-	-	-	-
SLC24A4	20	9	11	5
SLC24A5	3	2	1	-
SLC45A2	13	7	7	3
TUBB3	6	3	2	2
TYR	1	1	-	-
TYRP1	2	1	-	1
Total	305	162	148	73

Tabela 3. Número de DMPs encontradas nos genes de pigmentação nas comparações entre melanócitos escuros e claros, escuros e intermediários, e claros e intermediários.

Nota-se que foi encontrado um número muito menor de DMPs entre os claros e os intermediários em comparação com as outras duas análises. Esse resultado sugere uma maior semelhança entre esses dois tipos de melanócitos quando comparados aos escuros.

Nos gráficos abaixo (Figuras 6 a 10) foram ilustrados os perfis de metilação dos genes que apresentaram duas ou mais DMPs com diferença significativa em ao menos duas das três análises e ainda tiveram diferenças entre os melanócitos escuros e claros maiores ou iguais a 0,20 pontos no valor de beta (em módulo), visto que se espera uma maior concentração das diferenças entre essas duas tonalidades. Adicionalmente, foram ilustradas por completo as DMPs presentes no gene *MC1R* e *ASIP* que apresentaram diferença em ao menos duas análises ainda que não

apresentassem diferenças de 0,20 pontos no valor de beta entre melanócitos escuros e claros, visto a enorme relevância destes dois genes na melanogênese. É importante destacar que essa seleção visa apenas proporcionar uma melhor visualização dos resultados potencialmente mais relevantes dentre o conjunto completo apresentado no Apêndice B e o formato de gráfico escolhido para apresentar os resultados se baseia no número de DMPs a serem ilustradas.

No gene *ASIP* é possível notar que os melanócitos escuros apresentam valor beta de metilação ligeiramente maior nas DMPs presentes em CGI, na região do corpo do gene e 3'UTR (Figura 6). Por outro lado, a CpG cg13681935, presente no início do corpo do gene, apresenta valor beta de 0,73 para os melanócitos escuros, enquanto que para os melanócitos claros e médios o valor foi de 0,88. Essa DMP não foi incluída na figura, visto que se encontra muito distante das demais (8,3kb), o que dificulta a visualização em um mesmo gráfico.

ASIP (Corpo e 3'UTR)

Figura 6. Valores beta de metilação das DMPs presentes em CGI na região 3'UTR e no corpo do gene *ASIP* nos diferentes tipos de melanócitos. Da esquerda para a direita: cg19218509, cg16440058 e cg16655240 (3'UTR).

No corpo do gene *HERC2*, os melanócitos escuros apresentam valores de metilação menores do que os claros (Figura 7). Além disso, as CpGs cg27374167 e cg10839322 estão em *shore*, ou seja, próximas a uma ilha CpG, sendo que a cg27374167 apresenta diferença de 0,59 entre os melanócitos claros e escuros.

HERC2 (Corpo)

Figura 7. Valores beta de metilação das DMPs presentes em CGI no corpo do gene *HERC*2 nos diferentes tipos de melanócitos. Da esquerda para a direita: cg27374167, cg10839322 e cg25622125

No gene *MC1R*, os melanócitos escuros também apresentam maior valor no perfil de metilação das CpGs presentes em uma CGI na região exônica (Figura 8). Além disso, um achado de extrema relevância é o fato de a guanina da CpG cg04513015 corresponder ao SNP rs1805009 (G > A/C), associado a pigmentação de pele e cabelo (VALVERDE et al., 1995) e presente no sistema HirisPlex-S. Essa DMP apresenta um valor de *p* ajustado igual a 8,65 x 10⁻⁴ na comparação entre os melanócitos escuros e o claros, diferença que pode estar relacionada ao genótipo do indivíduo, pois a troca da guanina por outro nucleotídeo elimina o sítio CpG e, consequentemente, a metilação da citosina adjacente. Nas comparações entre os escuros e intermediários e entre os claros e intermediários, a DMP apresentou valores de *p* ajustados iguais a 2,45 x 10⁻⁴ e 9,90 x 10⁻³, respectivamente.

MC1R (1º Éxon)

Figura 8. Valores beta de metilação das DMPs presentes na região do 1º éxon do gene *MC1R* nos diferentes tipos de melanócitos. Da esquerda para a direita: cg04177015, cg06475006, cg01511465, cg02025435, cg04513015 (SNP rs105009) e cg0726033.

O gene *MITF* apresentou duas DMPs com diferenças nas três comparações e variação no valor beta maior que 0,20 entre os melanócitos claros e escuros (Figura 9). Na cg04811592, os melanócitos escuros apresentam menor nível de metilação do que os demais. O contrario acontece na cg18503031.

Na região exônica do gene *SLC45A2*, os melanócitos escuros apresentam perfil de metilação notavelmente maior do que os dos demais melanócitos. As duas DMPs com maiores diferenças nos valores de beta foram as cg04302388 e cg14189614, à direita (Figura 10).

MITF (Corpo)

Figura 9. Valores beta de metilação das DMPs presentes no corpo do gene *MITF* nos diferentes tipos de melanócitos

Figura 10. Valores beta de metilação das DMPs presentes na região exônica do gene *SLC45A2* nos diferentes tipos de melanócitos. Da esquerda para a direita: cg02074780 (corpo), cg04302388 e cg14189614 (1º éxon).

Além da pouca quantidade de amostras, uma outra limitação das análises da metilação no presente trabalho foi a ausência de dados de expressão dos tipos celulares estudados. Uma amostragem ideal seria baseada na coleta de amostras de voluntários, visto que as linhagens celulares obtidas comercialmente devem apresentar alterações de metilação devido ao ambiente ser diferente de células provenientes de amostras frescas de pele e sangue. Ainda, amostras colhidas de voluntários poderiam ser comparadas com os fenótipos de pigmentação pele de forma mais objetiva, além de levar em conta outros fatores como idade e estilo de vida, que podem influenciar nos perfis epigenéticos.

Dito isso, as discussões e a conclusão sobre as relações entre os valores de metilação, as regiões onde se encontram as CpGs, as tonalidades dos melanócitos e bem como a discussão subsequente sobre os diferentes tipos celulares se baseiam nas informações encontradas na literatura. É esperado que a metilação do material genético contribua negativamente com a expressão dos genes, principalmente nas regiões promotoras, afetando, por exemplo, a ligação dos fatores de transcrição. Em contrapartida, existem estudos que relatam que a metilação das regiões de corpo do gene pode aumentar sua expressão (MOORE; LE; FAN, 2013; WANG et al., 2022; YANG et al., 2014).

Em suma, o gene *ASIP* é descrito na literatura como um antagonista do processo da melanogênese. Seu produto gênico, a proteína de sinalização agouti, se opõe à interação entre o receptor de melanocortina 1 e o hormônio estimulador de α-melanócitos, o que provoca majoritariamente a produção de feomelanina (D'MELLO et al., 2016; SUZUKI et al., 1997). Devido a essa função, o *ASIP* também tem sido considerado um gene candidato a câncer de pele. Trabalhos anteriores mostraram associação de um polimorfismo na região 3' não traduzida (rs6058017, 8818 A>G) com características de pigmentação, como presença de sardas, cabelo ruivo, loiro e pele sensível ao sol (GUDBJARTSSON et al., 2008; KANESTSKY et al., 2002; LANDI et al., 2005; MEZIANI et al., 2005). Após as análises de metilação, foi verificado um maior valor beta no perfil de metilação dos melanócitos escuros em CpGs contidas na CGI no corpo do gene. Seguindo a ideia de que a metilação no corpo do gene aumentaria a expressão, era esperado que maiores níveis fossem encontrados nos melanócitos claros, visto a ação antagonizante do gene *ASIP*, o que reduziria a produção de eumelanina e resultaria em pigmentação mais clara. Porém, é válido

lembrar que tal gene possui atuação junto à porção externa da membrana dos melanócitos, uma informação importante em uma possível comparação com dados de expressão. Ainda, o achado corrobora a ideia tradicional de que a alta taxa de metilação diminui a expressão gênica, o que estaria de acordo com os maiores valores encontrados nos melanócitos escuros.

Para o gene *MC1R*, é esperado uma maior expressão nos melanócitos escuros, e esses apresentam um maior valor de metilação em uma CGI no corpo do gene do que os demais melanócitos. Essa observação está de acordo com o esperado, caso a metilação em regiões exônicas de fato venham a aumentar a expressão gênica (WANG et al., 2022).

O gene *MITF* é responsável por codificar um dos fatores de transcrição mais importantes na melanogênese, visto que atua como um ativador transcricional para regular a expressão de vários genes essenciais à melanogênese, como *TYR*, *TYRP1* e *DCT* (VACHTENHEIM; BOROVANSKÝ, 2010). Das 19 DMPs nele encontradas, duas apresentaram diferença significativa entre ao menos duas análises e diferença > 0,20 nos valores beta entre os melanócitos escuros e os claros. É interessante destacar que ambas estão separadas por mais de 80kb, e enquanto na primeira delas os melanócitos escuros apresentaram o maior valor beta, na segunda apresentaram o menor valor, o que sugere que a metilação desempenha papeis distintos nestas duas regiões do gene.

Os genes OCA2 e HERC2 estão entre os mais importantes na determinação da pigmentação dos olhos. O OCA2 codifica a proteína P, importante no processo de maturação do melanossomo. Essa proteína afeta a quantidade e a qualidade da melanina que se deposita nos melanócitos (DUFFY et al., 2007). O íntron 86 do gene HERC2 regula o gene OCA2 e altera sua expressão, visto que a região promotora deste último está contida no HERC2. Estudos sobre essa região e sua sequência mostram que a mudança de base de timina para citosina no SNP rs12913832 regula a ligação de fatores de transcrição junto à região promotora do gene OCA2, alterando sua expressão. Isso é determinante para o desenvolvimento de olhos azuis (EIBERG et al., 2008). Em se tratando da pigmentação da pele, é visto na Figura 7 que o corpo do gene HERC2 apresenta menor valor beta de metilação nos melanócitos escuros, o que poderia contribuir com uma maior expressão de OCA2. Embora isso seja

64

esperado para a pigmentação dos olhos, é difícil atribuir uma relação direta entre a expressão/metilação do gene *OCA2* e a intensidade da pigmentação da pele.

O gene *SLC45A2* é composto por sete éxons que codificam a Proteína Transportadora Associada à Membrana (MATP), que faz a mediação da síntese de melanina pelo tráfego de tirosinase e transporte de prótons para os melanossomos. Além disso, é responsável pelo controle do pH e da homeostase iônica dentro dos melanossomos. Mutações nesse gene podem causar albinismo oculocutâneo e SNPs estão associados a variações na cor da pele e do cabelo (DOOLEY et al., 2013; TULLY, 2007; WILDE et al., 2014; YUASA et al., 2006). No gráfico de metilação dos melanócitos analisados, é possível notar maiores valores beta nos escuros, na região exônica do gene. O esperado é que esses melanócitos apresentem maior expressão do *SLC45A2* para contribuir positivamente com a melanogênese e na produção de pigmentação mais escura, ou seja, eumelanina. Portanto, o alto nível de metilação observado nos melanócitos escuros é inconsistente com o papel clássico de metilação como um inibidor de expressão gênica e corrobora a hipótese alternativa de que a metilação em regiões codificantes do gene contribua para acentuar a expressão gênica.

6.1.2. Metilação para diferenciar tipos celulares

Na comparação entre as amostras de melanócitos e os demais tipos celulares foi possível encontrar diferenças que podem ser capazes de diferenciá-los em quase todos os genes considerados. No total, foram encontradas 328 DMPs diferentes nas análises, de forma que 133 foram comuns às três comparações (Figura 11; Tabela 4). No Apêndice B encontram-se todas as CpGs presentes nesses genes que apresentaram diferença estatisticamente significativa entre as amostras de melanócitos e as demais, após o ajuste de Benjamini-Hochberg no valor *p*.

Figura 11. Número de DMPs encontradas nas comparações entre melanócitos e fibroblastos (M x F), leucócitos (M x L) e queratinócitos (M x Q).

Gene	Total DMPs	Melanócitos vs. Fibroblastos	Melanócitos vs. Queratinócitos	Melanócitos vs. Leucócitos
ANKRD11	119	72	67	97
ASIP	5	2	3	1
BNC2	15	7	8	12
DEF8	14	12	6	10
HERC2	11	7	5	9
IRF4	9	7	8	7
KITLG	7	4	1	6
LOC105370627	-	-	-	-
LOC105374875	-	-	-	-
MC1R	10	7	8	8
MITF	32	19	25	24
OCA2	38	24	24	20
PIGU	1	1	1	1
POMC	17	13	17	13
RALY	-	-	-	-
SLC24A4	19	16	13	12
SLC24A5	9	8	7	9
SLC45A2	6	4	5	5
TUBB3	10	3	4	8
TYR	3	2	3	2
TYRP1	3	3	3	3
Total	328	211	208	247

Tabela 4. Número de DMPs encontradas nos genes de pigmentação nas comparações entre melanócitos e fibroblastos, queratinócitos e leucócitos.

Semelhante ao item anterior, foram selecionados os genes que apresentaram duas ou mais DMPs com diferença significativa entre as três análises. Entre esses, ainda foram filtrados apenas os que apresentaram variação no valor de beta maior ou igual a 0,20 (em módulo) entre os melanócitos e a média dos outros tipos celulares. Ressalta-se novamente que essa seleção visa apenas proporcionar uma melhor visualização dos resultados potencialmente mais relevantes dentre o conjunto completo apresentado no Apêndice B e o formato de gráfico escolhido para apresentar os resultados se baseia no número de DMPs a serem ilustradas.

Embora não tenham sido encontrados trabalhos relacionando diretamente o *ANKRD11* com o processo de melanogênese e a pigmentação, tal gene possui um SNP associado a cor de olhos, cabelo e pele presente no sistema HIrisPlex-S e apresentou o maior número de DMPs capazes de diferenciar os melanócitos dos demais tipos celulares (Tabela 4). A Figura 12 ilustra as CpGs presentes na região 5'UTR do gene, mas neste caso optamos por apresentar apenas aquelas que apresentassem diferenças superiores a 0,40 pontos no valor de beta entre melanócitos e os demais tipos celulares, visto que a ilustração de todas as 25 DMPs que obedecem ao critério anteriormente proposto iria prejudicar a análise visual. É possível notar que os melanócitos e leucócitos. Por outro lado, a CpG cg16437021 apresenta valor beta de 0,79 para os melanócitos, enquanto que os fibroblastos, queratinócitos apresentam respectivamente valores 0,25, 0,03 e 0,29. Essa DMP não foi incluída na figura, visto que se encontra muito distante das demais (70,5 kb), o que dificulta a visualização em um mesmo gráfico.

Figura 12. Valores beta de metilação das DMPs presentes na região 5'UTR do gene *ANKRD11* nos diferentes tipos celulares. Da esquerda para a direita: cg08583277, cg02582213, cg08549241, cg26946905, cg06567829, cg03163759, cg08057432 e cg08417142.

Assim como descrito por Budden & Bowden (2019), existe uma CGI na região exônica do gene *MC1R* que se apresenta hipometilada nos melanócitos, corroborando a hipótese de que a metilação na região promotora teria um papel de diminuir a expressão dos genes, logo a menor taxa de metilação nos melanócitos aumentaria sua atividade. Além disso, ela se encontra em uma região intensificadora, conforme definido pelo banco de dados ENCODE (LUO et al., 2020). Logo, a região dessa CGI pode ser potencializadora para o gene *MC1R* através da ligação de fatores de transcrição, onde a metilação pode alterar a ligação e a expressão do gene (Figura 13).

ANKRD11 (5'UTR)

Figura 13. Valores beta de metilação das DMPs presentes na região exônica do gene *MC1R* nos diferentes tipos celulares. Da esquerda para a direita: cg04177015, cg06475006, cg01511465, cg02025435 e cg04513015.

Outro resultado de grande interesse, semelhante ao descrito no trabalho de Lauss et al. (2015), foi encontrado no gene *MITF*, onde as DMPs próximas ao sítio de início de transcrição aparecem hipometiladas nos melanócitos e hipermetiladas nas demais amostras (Figura 14).

MITF (região promotora)

● Fibroblastos ● Queratinócitos ● Leucócitos ● Melanócitos

Figura 14. Valores beta de metilação das DMPs presentes na região promotora do gene *MITF* nos diferentes tipos celulares. Da esquerda para a direita: cg16905280, cg11038507, cg06640206, cg13636907, cg07317047 e cg02643677.

Nas amostras de fibroblastos, queratinócitos e leucócitos, os genes *BNC2* (Figura 15), *DEF8* (Figura 16), *HERC2* (Figura 17), *IRF4* (Figura 18), *OCA2* (Figura 19), *SLC24A5* (Figura 20), *SLC45A2* (Figura 21), *TYR* (Figura 22) e *TYRP1* (Figura 23) se encontram majoritariamente hipermetilados, enquanto que nas amostras de melanócitos observa-se hipometilação. Este achado é consistente com as funções típicas destes genes em melanócitos (CICHOREK et al., 2013; LIU; WEN; KAYSER, 2013; PRAETORIUS et al., 2014; YUASA et al., 2006). Por outro lado, as DMPs presentes no gene *SLC24A4* apresentam maiores valores no perfil de metilação dos melanócitos (Figura 24).

Figura 15. Valores beta de metilação das DMPs presentes no corpo do gene *BNC2* nos diferentes tipos celulares. Da esquerda para a direita: cg14613546, cg13452214 e cg03291755.

DEF8

Figura 16. Valores beta de metilação das DMPs presentes na região promotora (cg16504670) e corpo (cg03987653) do gene *DEF8* nos diferentes tipos celulares.

Figura 17. Valores beta de metilação das DMPs presentes no corpo do gene *HERC2* nos diferentes tipos celulares. Da esquerda para a direita: cg10839322, cg25059751 e cg25622125.

Figura 18. Valores beta de metilação das DMPs presentes no corpo do gene *IRF4* nos diferentes tipos celulares. Da esquerda para a direita: cg24319508, cg07817739, cg11417701, cg17336615 e cg07574896.

Figura 19. Valores beta de metilação das DMPs presentes no corpo (cg26426112) e na região 5'UTR do gene OCA2 nos diferentes tipos celulares.

Figura 20. Valores beta de metilação nas DMPs presentes na região promotora do gene *SLC24A5* nos diferentes tipos celulares. Da esquerda para a direita: cg24125468, cg09456905, cg19409156, cg09625274, cg01325409, cg01497576 e cg04643655.

Figura 21. Valores beta de metilação das DMPs presentes no gene *SLC45A2* nos diferentes tipos celulares. Da esquerda para a direita: cg23047415 (corpo), cg05018638 (5'UTR) e cg23430771 (TSS200).

Figura 22. Valores beta de metilação nas DMPs presentes na região promotora e éxon do gene *TYR* nos diferentes tipos celulares.

Figura 23. Valores beta de metilação nas DMPs presentes no gene *TYRP1* nos diferentes tipos celulares. Da esquerda para a direita: cg25989745 (TSS200), cg05274944 (5'UTR) e cg14542367 (corpo).

SLC24A4

Figura 24. Valores beta de metilação das DMPs presentes no gene *SLC24A4* nos diferentes tipos celulares. Da esquerda para a direita: cg07031872, cg24195486, cg14512346 (TSS1500), cg16267322 (corpo) e cg05200313 (3'UTR).

Muitas DMPs presentes no gene *POMC* se encontram em uma região de ilha CpG, próxima ao sítio de início de transcrição. Elas apresentam maior nível de metilação nos melanócitos do que nas demais amostras celulares. Apesar de ser um padrão contrário ao encontrado nos genes anteriores, ele não é inesperado, visto que este hormônio se liga a receptores extracelulares, não sendo expresso dentro dos melanócitos (MILLINGTON, 2006). Vale destacar que essa diferença entre os tipos celulares também pode colaborar com a diferenciação das amostras e o melhor entendimento sobre as funções dos melanócitos.

Além disso, essa foi a única região diferencialmente metilada (DMR) encontrada no presente estudo, determinada estatisticamente nas análises entre os melanócitos e os fibroblastos, queratinócitos e leucócitos (Figura 25). É possível notar que os demais genes estudados apresentaram CpGs com diferenças significativas entre as amostras de diferentes tipos celulares e mesmo entre as amostras de melanócitos e ainda assim não foram determinadas como DMRs. Essa observação pode ser explicada pelo fato de o gene *POMC* possuir uma concentração de sondas muito superior aos demais genes, com CpGs próximas entre si, tornando possível que toda essa região fosse identificada como diferencialmente metilada.

Figura 25. Região diferencialmente metilada (DMR) encontrada entre melanócitos e demais tipos celulares em CGI na região promotora do gene *POMC*.

Além de buscar CpGs nos genes envolvidos na determinação da pigmentação humana que possam diferenciar os melanócitos das outras células epiteliais, tínhamos por hipótese que marcadores epigenéticos previamente propostos para identificação tecidual diferem entre os tipos celulares da pele humana, o que poderia prejudicar seu emprego na rotina forense de identificação de fluidos e tecidos.

Dessa forma, o gene *SOGA1*, identificado previamente em estudos como sendo capaz de discriminar amostra de sangue quando comparada com saliva, sêmen e pele (ECKHARDT et al., 2006; MADI et al., 2012), também foi estudado nas amostras do presente trabalho, analisando-se a diferença de metilação entre os leucócitos de sangue periférico e as células da pele (queratinócitos, melanócitos e fibroblastos). No ensaio *Infinium Human Methylation 450K BeadChip*, utilizado no presente estudo, estão presentes apenas cinco das sete CpGs do gene *SOGA1* (Tabela 5). Apesar de todas terem se apresentado como DMPs estatisticamente significantes após o ajuste de Benjamini-Hochberg, a cg01844321 (Figura 26) apresentou diferença extrema entre os leucócitos e o conjunto das células da pele.

DMP	Gene	Posição hg19	Região*	Beta Sangue	Beta Pele	Valor de <i>p</i> ajustado
cg08792630	FOXO3	6:108883909	Corpo	0,34	0,04	1,82E-09
cg06379435	-	19:3344273	-	0,44	0,52	-
cg08624249	SOGA1	20:35424845	Corpo	0,83	0,94	4,74E-05
cg06814048	SOGA1	20:35444364	Corpo	0,89	0,96	0,0004
cg01844321	SOGA1	20:35490815	Corpo	0,90	0,03	4,83E-16
cg22328786	SOGA1	20:35491355	1ºÉxon	0,09	0,04	2,22E-07
cg16144843	SOGA1	20:35492721	TSS1500	0,13	0,07	0,0058

Tabela 5. DMPs presentes no gene *SOGA1* para diferenciar amostras de leucócitos (sangue) e tipos celulares da pele.

*1ºÉxon: primeiro éxon; TSS1500: 1.500 a 201 pb *upstream* em relação ao local de início da transcrição; Corpo: região gênica exceto promotora, UTRs e primeiro éxon.

No mesmo sentido, duas CpGs (cg06379435 e cg08792630) previamente identificadas por Lee et al. (2016) também foram avaliadas. Após analisar esses dois marcadores, observamos que apenas a cg08792630 apresentou diferença no nível de metilação entre os leucócitos e as células da pele, com valor de p ajustado de

1,82x10⁻⁹, usando a correção de Benjamini-Hochberg (Figura 27). Essa CpG está contida no corpo do gene *FOXO3* em uma região de *shore*, próxima a uma CGI. Por outro lado, o marcador cg06379435 não apresentou diferença significativa na análise entre amostras de leucócitos do sangue (beta = 0,44) e células da pele (beta = 0,52).

Figura 26. Nível de metilação da cg01844321 entre a amostra de leucócitos (sangue) e diferentes tipos celulares da pele.

Pela Tabela 6, é possível notar que as duas CpGs que apresentaram diferenças mais extremas foram a cg01844321 (beta das células epiteliais: 0,02 a

0,04; beta de leucócitos: 0,90) e a cg08792630 (beta das células epiteliais: 0,03 a 0,07; beta de leucócitos: 0,34). Ainda, é possível notar que os valores de metilação não apresentam grandes variações entre os tipos celulares da pele em quase todas as CpGs. Portanto, apesar do número limitado de CpGs estudadas se considerado a totalidade de CpGs descritas para diferenciação de tecido epitelial e sangue, os dados apresentados permitem rejeitar a hipótese de que os marcadores epigenéticos previamente propostos para identificação tecidual apresentam níveis de metilação que diferem entre os tipos celulares da pele humana.

A exceção se encontra na cg06379435, que apresentou valor de beta de 0,81 a 0,90 para os melanócitos, enquanto que para os fibroblastos e queratinócitos foi de 0,02. Essa diferença pode ter contribuído para o fato de não ser constatada diferença significativa entre as amostras de pele e sangue no presente estudo, o que contribui com a hipótese de que a análise conjunta de diferentes tipos celulares da pele pode interferir na identificação desse tecido. No entanto, um fato que deve ser levado em conta é a proporção de cada tipo celular em uma amostra de tecido epitelial. Esperase, por exemplo, uma maior quantidade de queratinócitos e fibroblastos do que de melanócitos em um fragmento de pele encontrado em um local de crime. Dessa forma, haveria uma menor contribuição dos valores de metilação dos melanócitos, e consequentemente seria possível a diferenciação significativa entre a amostra de pele e a de sangue. Ao contrario do que se observa no presente trabalho, onde há apenas uma amostra de cada tipo celular.

DMP	Sangue	M. Escuros	M. Inter.	M. Claros	Fibroblastos	Queratinócitos
cg08792630	0,34	0,07	0,03	0,04	0,04	0,04
cg06379435	0,44	0,90	0,83	0,81	0,02	0,02
cg08624249	0,83	0,96	0,94	0,94	0,92	0,93
cg06814048	0,89	0,94	0,97	0,96	0,97	0,96
cg01844321	0,90	0,03	0,04	0,03	0,02	0,02
cg22328786	0,09	0,04	0,04	0,04	0,04	0,04
cg16144843	0,13	0,06	0,05	0,06	0,09	0,08

Tabela 6. Valores beta de metilação nas DMPs utilizadas para identificação de sangue e pele nos diferentes tipos celulares aqui estudados.

Deste modo, as cinco CpGs presentes no gene *SOGA1* e a cg08792630 presente no gene *FOXO3* foram capazes de identificar a amostra de sangue nos dados do presente estudo, corroborando a proposta de que esses marcadores podem ajudar a distinguir sangue de pele em uma cena de crime pela análise epigenética e ajudar a elucidar casos forenses. Observa-se que algumas DMPs dos genes *SLC45A2* (Figura 21) e *IRF4* (Figura 18) também se mostram úteis para esta finalidade.

Além disso, caso seja de interesse a identificação apenas de melanócitos, a maioria das CpGs presentes nos genes *MC1R*, *MITF*, *SLC24A5*, *SLC45A2*, *TYR*, *TYRP1*, *IRF4*, *BNC2*, *DEF8*, *HERC2* e *OCA2* apresentaram perfil de metilação reduzido nesse tipo celular em comparação com os demais. Uma única DMR foi encontrada nesse trabalho, presente no gene *POMC*, onde os melanócitos apresentam valor beta de metilação mais elevado do que os demais tipos celulares.

Dessa forma, além de ajudar a compreender melhor o papel desses genes na pigmentação humana e sua regulação pela epigenética, os marcadores aqui relatados são promissores na identificação das células de melanócitos, e alguns deles até para a diferenciação entre as células epiteliais como um todo e o sangue, podendo apresentar aplicabilidade adicional no campo forense.

6.2. Seleção de SNPs em CGIs e suas vizinhanças.

6.2.1. SNPs presentes no sistema HIrisPlex-S

Um outro direcionamento seguido pelo projeto foi o de analisar os SNPs presentes nos genes estudados e buscar entender a relação entre a variabilidade genética e a epigenética na pigmentação humana. Para isso, espera-se que em todos os genes se encontrem ilhas CpGs e que os SNPs presentes nesses locais possam ter alguma relação com a metilação e com a biossíntese de melanina. Por exemplo, uma das hipóteses é que alguns SNPs (aqueles que possuem alelos C ou G) façam com que CpGs sejam criadas ou deixem de existir e de ser passíveis de metilação e

isso altere a expressão dos genes de pigmentação. Ainda, esses polimorfismos podem acabar inviabilizando propriedades das CGIs.

Em relação à pigmentação, a ferramenta HIrisPlex-S possui um rol de SNPs associados com a cor dos olhos, cabelo e pele. A Tabela 7 a seguir lista os SNPs utilizados pelo HIrisPlex-S e sua distância de ilhas CpG. A última coluna informa o posicionamento do SNP em questão em relação à ilha CpG mais próxima: "CGI" (quando o SNP se encontra na ilha), "*shore*" (< 2 kb da CGI), "*shelf*" (entre 2 e 4 kb da CGI) e "*opensea*" (> 4 kb da CGI).

Dos 41 polimorfismos presentes no Sistema HIrisPlex-S, 9 se encontram em ilhas CpG. Destes, com exceção do SNP rs1129038, presente no gene *HERC2*, todos estão contidos na região do gene *MC1R*.

Os 9 SNPs que se encontram em CGIs apresentam alelos que contêm citosinas e guaninas, ou seja, pode ser que interfiram nas CpGs e consequentemente no estado de metilação dessa região. O SNP rs1805009 do gene *TUBB3* corresponde à guanina da CpG cg04513015, a qual apresentou metilação diferencial entre os melanócitos. Ele não se encontra em uma CGI, porém está caracterizado em uma região de *shore* (até 2 kb de uma CGI). Esse é um resultado muito relevante para o trabalho, pois indica que padrões de metilação diferencial já estão diretamente representados nas ferramentas preditivas, ainda que de maneira oculta. Adicionalmente, nenhum outro SNP coincidiu precisamente com uma sonda CpG.

Também é preciso levar em conta que os SNPs presentes no HIrisPlex-S, ainda que não estejam em CGIs, podem ter relação com aqueles que estão. Dessa forma, foi analisado também o desequilíbrio de ligação (DL) entre tais marcadores e SNPs presentes em CGIs vizinhas. Alguns SNPs do HIrisPlex-S que se encontram em *opensea* apresentaram forte desequilíbrio com outros que estão presentes em CGIs. Após uma análise geral buscando variantes funcionais em DL com marcadores do sistema HIrisPlex-S (tagSNPs), utilizando a ferramenta LDproxy e todas as populações do projeto 1000 Genomes como referência, foram feitas análises refinadas com os grupos populacionais europeu (EUR) e americano miscigenado (AMR) separadamente, visto que a população europeia é mais similar àquelas em que a ferramenta preditiva foi desenvolvida, e a americana miscigenada é bem semelhante

à população brasileira. Na Tabela 8 se encontram os 3 SNPs com maiores valores de D' e R^2 , tanto para população total quanto para europeia e americana.

Gene	SNP	Alelos	Posição hg38	Localização em relação à ilha CpG mais próxima
ANKRD11	rs3114908	T > A, C, G	16:89317317	Opensea
ASIP	rs6119471	C > A, G	20:34197406	Shore
BNC2	rs10756819	G > A, C, T	9:16858086	Opensea
DEF8	rs8051733	A > G	16:89957798	Opensea
HERC2	rs12913832	A > C, G	15:28120472	Opensea
HERC2	rs2238289	A > G	15:28208069	Opensea
HERC2	rs6497292	A > G	15:28251049	Opensea
HERC2	rs1129038	C > T	15:28111713	CGI
HERC2	rs1667394	C > A, T	15:28285036	Opensea
IRF4	rs12203592	C > G, T	6:396321	Shelf
KITLG	rs12821256	T > A, C, G	12:88934558	Opensea
LOC105370627	rs12896399	G > A, T	14:92307319	Opensea
LOC105374875	rs4959270	C > A, G, T	6:457748	Opensea
MC1R	rs312262906	A > -, AA	16:89919343	Shore
MC1R	rs11547464	G > A	16:89919683	CGI
MC1R	rs885479	G > A, C	16:89919746	CGI
MC1R	rs1805008	C > T	16:89919736	CGI
MC1R	rs1805005	G > T	16:89919436	Shore
MC1R	rs1805006	C > A, G	16:89919510	CGI
MC1R	rs1805007	C > A, G, T	16:89919709	CGI
MC1R	rs201326893	C > A	16:89919714	CGI
MC1R	rs2228479	G > A, C	16:89919532	CGI
MC1R	rs1110400	T > C	16:89919722	CGI
MC1R	rs3212355	C > T	16:89917970	Shore
OCA2	rs1800407	C > T	15:27985172	Opensea
OCA2	rs1800414	T > A, C	15:27951891	Opensea
OCA2	rs1470608	G > A, C, T	15:28042975	Opensea
OCA2	rs1545397	A > T	15:27942626	Opensea
OCA2	rs12441727	G > A, C	15:28026629	Opensea
PIGU	rs2378249	G > A, C	20:34630286	Opensea
RALY	rs6059655	A > G	20:34077942	Opensea
SLC24A4	rs2402130	G > A, C, T	14:92334859	Opensea
SLC24A4	rs17128291	A > G	14:92416482	Opensea
SLC24A5	rs1426654	A > G, T	15:48134287	Opensea
SLC45A2	rs28777	C > A, G	5:33958854	Opensea
SLC45A2	rs16891982	C > A, G	5:33951588	Opensea
TUBB3	rs1805009	G > A, C	16:89920138	Shore
TYR	rs1042602	C > A	11:89178528	Opensea
TYR	rs1393350	G > A	11:89277878	Opensea
TYR	rs1126809	G > A	11:89284793	Opensea
TYRP1	rs683	C > A	9:12709305	Opensea

Tabela 7. SNPs presentes no sistema HIrisPlex-S e suas posições em relação a ilhas CpGs.

SNP	tagSNP em		Score Regulome DB	Total		EUR		AMR	
HIrisPlex-S	CGI	Aleios		D'	R²	D'	R²	D'	R²
rs12913832	rs1129038	(C/T)	5	1,00	0,99	1,00	0,99	1,00	0,99
rs2378249	rs13037664	(T/C)	2b	0,91	0,40	0,99	0,77	1,00	0,47
rs6119471	rs60847955	(G/C)	4	0,99	0,50	1,00	1,00	1,00	0,48

Tabela 8. tagSNPs em ilhas CpG em desequilíbrio de ligação com polimorfismos do sistema HIrisPlex-S.

Score Regulome DB: 5 - Ligação de fator de transcrição ou pico de acessibilidade à cromatina; 2b – ligação de fator de transcrição + *footprinting* (complexos DNA-proteína) + pico de acessibilidade da cromatina + outros; 4 - ligação de fator de transcrição + pico de acessibilidade à cromatina.

O primeiro tagSNP, rs1129038, se encontra no gene *HERC2* e já é utilizado no sistema HIrisPlex-S. Portanto, já existem trabalhos indicando seu papel no processo de pigmentação (ANDRADE et al., 2017; DONNELLY et al., 2012; EIBERG et al., 2008). Esse polimorfismo apresenta forte desequilíbrio com o SNP rs12913832, também presente no HIrisPlex-S, mas fora de ilha CpG. Em um trabalho realizado previamente em uma amostragem da população brasileira (DEBORTOLI, 2018), foi observada associação do alelo "C" do polimorfismo rs1129038 com pele escura, por meio de análises quantitativas do índice de melanina. Isso representa um achado consistente com o aqui relatado, visto que ambos polimorfismos estão em um alto desequilíbrio de ligação.

Não foram encontrados trabalhos anteriores sobre funções específicas dos tagSNPs rs13037664 e rs60847955. Apesar disso, de acordo com o RegulomeDB, esses polimorfismos estão relacionados com ligações de fatores de transcrição e outras proteínas ao DNA, bem como com relaxamento da cromatina.

A partir do sistema HIrisPlex-S, portanto, um total de 12 SNPs foram selecionados em termos de potencial relação da metilação sobre fenótipos de pigmentação: rs11547464, rs885479, rs1805008, rs1805006, rs1805007, rs201326893, rs2228479, rs1110400, rs1129038 (presentes no HIrisPlex-S e em CGI); rs1805009 (presente no HIrisPlex-S e com metilação diferencial); rs13037664 e rs60847955 (em LD com SNPs do HIrisPlex-S e presente em CGI). Informações sobre tais SNPs de interesse foram buscadas na ferramenta online SNPnexus, a fim de encontrar anotações funcionais relevantes. Na Tabela 9 se encontram as frequências

do alelo alternativo de cada polimorfismo em quatro grupos populacionais do projeto 1000 Genomes.

Cono	SND	Alolog	Frequência do alelo alternativo			
Cene	SNF	Aleios	AFR	EUR	EAS	AMR
HERC2	rs1129038	C > T	0,0280	0,6352	0,0010	0,2032
MC1R	rs1805006	C > A	0,0008	0,0099	-	0,0014
MC1R	rs2228479	G > A	0,0038	0,0686	0,2887	0,0231
MC1R	rs11547464	G > A	0,0008	0,0089	-	0,0058
MC1R	rs1805007	C > T	0,0030	0,0716	0,0010	0,0159
MC1R	rs201326893	C > A	-	-	-	0,0014
MC1R	rs1110400	T > C	-	0,0080	-	0,0086
MC1R	rs1805008	C > T	0,0038	0,0616	-	0,0029
MC1R	rs885479	G > A	0,0068	0,0696	0,6161	0,3156
TUBB3	rs1805009	G > C	0,0015	0,0080	-	0,0101
AHCY	rs60847955	G > C	0,3880	0,0010	-	0,0346
TP53INP2	rs13037664	T > C	0,4228	0,8559	0,7738	0,8790

Tabela 9. Frequências alélicas dos polimorfismos de interesse em grupos populacionais do projeto 1000 Genomes.

O SNPnexus também retornou informações sobre elementos regulatórios a partir do portal Ensembl, que contém dados públicos sobre marcas epigenéticas e ligação de fatores de transcrição em diferentes tipos de células humanas. Este banco de dados foi construído visando identificar marcadores epigenômicos que variem entre as amostras, focando exclusivamente nas marcações associadas à regulação transcricional (ZERBINO et al., 2015). Para cada SNP pesquisado, é possível obter informação sobre a coincidência com posições de ligação dos fatores de transcrição, tipo de característica reguladora, e atividade em diferentes tipos celulares. A Tabela 10 lista os resultados encontrados para os SNPs de interesse nas células relacionadas ao presente trabalho, como queratinócitos, fibroblastos da pele e tipos específicos de leucócitos (monócitos, neutrófilos e células NK). Não foram encontradas anotações para melanócitos e leucócitos de sangue periférico.

SNP	Sitio de ligação de Fator de Transcrição	Tipo celular	Atividade
		Fibroblasto	Inativo
		Queratinócito	Inativo
		Monócito-CD14+	Inativo
		Monócito-CD14+ (PB)	Inativo
	chr20:34301600-34304201 (Promotor)	Célula NK (PB)	Inativo
rc60947055		Neutrófilo	Inativo
1500047955		Neutrófilo (CB)	Inativo
		Neutrófilo (VB)	Inativo
		Mielócito neutrófilo (BM)	Inativo
		Fibroblasto	Inativo
	chr20:34302401-34303000 (Ligação de CTCF)	Queratinócito	Inativo
		Monócito-CD14+	Reprimido
		Fibroblasto	Inativo
		Queratinócito	Inativo
		Monócito-CD14+	Inativo
		Monócito-CD14+ (PB)	Inativo
	chr20:34708000-34711401 (Promotor)	Células NK (PB)	Inativo
		Neutrófilo	Inativo
1813037664		Neutrófilo (CB)	Inativo
		Neutrófilo (VB)	Inativo
		Mielócito neutrófilo (BM)	Inativo
		Fibroblasto	Ativo
	chr20:34708201-34710600 (Ligação de CTCF)	Queratinócito	Reprimido
		Monócito-CD14+	Inativo

Tabela 10. Anotações de elementos regulatórios referentes aos SNPs e células de interesse, recuperadas a partir do portal Ensembl por meio do software SNPnexus.

Nota-se que apenas os tagSNPs rs60847955 (AHCY) e rs13037664 (*TP53INP2*) apresentam informações sobre regulação epigenômica. Na maioria dos casos, os dois SNPs não apresentam modificações epigenéticas, resultando em um estado de inatividade. Porém, estão localizados na região promotora de seus genes, particularmente em sítio de ligação para o fator de transcrição CTCF (*CCCTC-binding factor*). Segundo a literatura, esse fator de transcrição se liga a dezenas de milhares de sítios genômicos, alguns tecido-específicos, outros ultraconservados. Ele pode atuar como um ativador, repressor e isolador da transcrição, e pode pausar a transcrição. Segundo a Tabela 10, ele se encontra ativo no gene *TP53INP2* (rs13037664) nas células de fibroblastos, o que significa que possui uma assinatura epigenética consistente com o início da transcrição.

Apesar disso, a função exata do CTCF em um determinado sitio é imprevisível e depende de diversos outros fatores associados (BASTIAAN HOLWERDA; DE LAAT, 2013). Apesar de seu papel no contexto da melanogênese ainda não ter sido avaliado, a presença de sítios de ligação do CTCF no locus *OCA2/HERC2* pode contribuir com a comunicação entre o promotor *OCA2* e o intensificador que inclui o SNP rs12913832 presente no *HERC2* (VISSER et al., 2014).

6.2.2. SNPs presentes em regiões próximas aos genes.

Analisamos SNPs que se encontram em ilhas CpG ao redor de todos os genes presentes no sistema HIrisPlex-S. Para isso, foi selecionado um intervalo de 100kb *upstream* e *downstream* de cada gene, a partir de suas coordenadas dadas pelo UCSC Genome Browser (<u>https://genome.ucsc.edu/</u>). As CGIs contidas em cada região dos respectivos genes se encontram na Tabela 11.

Gene	CGI (hg38)	Gene	CGI (hg38)
POMC	chr2:25131414-25131908	ANKRD11	chr16:89191344-89192602
POMC	chr2:25161070-25161894	ANKRD11	chr16:89193147-89193592
POMC	chr2:25168203-25169006	ANKRD11	chr16:89201415-89201679
POMC	chr2:25204232-25204708	ANKRD11	chr16:89202084-89202457
POMC	chr2:25215856-25216407	ANKRD11	chr16:89217354-89218208
MITF	chr3:69739332-69740057	ANKRD11	chr16:89232866-89233466
SLC45A2	chr5:33892086-33892298	ANKRD11	chr16:89247055-89248187
SLC45A2	chr5:33936063-33938204	ANKRD11	chr16:89248611-89248913
SLC45A2	chr5:34007691-34008000	ANKRD11	chr16:89256872-89257253
IRF4	chr6:291948-292839	ANKRD11	chr16:89268166-89268680
IRF4	chr6:391188-393790	ANKRD11	chr16:89279055-89282113
IRF4	chr6:423846-424313	ANKRD11	chr16:89286120-89286417
TYRP1	chr9:12775487-12775814	ANKRD11	chr16:89305079-89305302
BNC2	chr9:16726861-16727275	ANKRD11	chr16:89305573-89307106
BNC2	chr9:16828937-16829171	ANKRD11	chr16:89341829-89342057
BNC2	chr9:16870125-16872022	ANKRD11	chr16:89372095-89372442
SLC24A4	chr14:92322569-92322860	ANKRD11	chr16:89389739-89390362
SLC24A4	chr14:92513382-92514884	ANKRD11	chr16:89421352-89421750
OCA2	chr15:27770200-27770649	ANKRD11	chr16:89433617-89433818
OCA2	chr15:27771253-27771509	ANKRD11	chr16:89489367-89491345
OCA2	chr15:27805104-27805643	ANKRD11	chr16:89507546-89508960
OCA2	chr15:27806392-27806644	ANKRD11	chr16:89537155-89537488
OCA2	chr15:27902779-27903319	ANKRD11	chr16:89541890-89542130
OCA2	chr15:28003423-28004020	ANKRD11	chr16:89560236-89561461
HERC2	chr15:28094628-28097296	ANKRD11	chr16:89566184-89566391
OCA2	chr15:28099042-28099343	ANKRD11	chr16:89574645-89577007
HERC2	chr15:28106460-28107956	TUBB3	chr16:89827899-89828737
HERC2	chr15:28111557-28111880	TUBB3	chr16:89834086-89835264
HERC2	chr15:28113022-28113352	DEF8	chr16:89850242-89850784

HERC2	chr15:28117111-28117346	DEF8	chr16:89854089-89854332
HERC2	chr15:28132625-28132828	DEF8	chr16:89854510-89854713
HERC2	chr15:28214231-28214615	DEF8	chr16:89873024-89874404
HERC2	chr15:28322078-28322549	DEF8	chr16:89879106-89879915
HERC2	chr15:28402863-28403364	DEF8	chr16:89911154-89911443
SLC24A5	chr15:48177810-48178431	DEF8	chr16:89919505-89919948
MC1R	chr16:89815984-89817050	DEF8	chr16:89922422-89923338
MC1R	chr16:89827899-89828737	DEF8	chr16:89923661-89924099
MC1R	chr16:89834086-89835264	DEF8	chr16:89925727-89926552
MC1R	chr16:89850242-89850784	DEF8	chr16:89933943-89934279
MC1R	chr16:89854089-89854332	DEF8	chr16:89934863-89935848
MC1R	chr16:89854510-89854713	DEF8	chr16:89947842-89948205
MC1R	chr16:89873024-89874404	DEF8	chr16:89964101-89964332
MC1R	chr16:89879106-89879915	DEF8	chr16:89972122-89973175
MC1R	chr16:89911154-89911443	DEF8	chr16:89999909-90000235
MC1R	chr16:89919505-89919948	TUBB3	chr16:90003354-90004475
MC1R	chr16:89922422-89923338	DEF8	chr16:90018701-90020011
MC1R	chr16:89923661-89924099	DEF8	chr16:90052407-90053113
MC1R	chr16:89925727-89926552	ASIP	chr20:34302753-34303572
MC1R	chr16:89933943-89934279	ASIP	chr20:34111451-34112475
MC1R	chr16:89934863-89935848	ASIP	chr20:34363178-34364163
MC1R	chr16:89947842-89948205	ASIP	chr20:34111451-34112475
MC1R	chr16:89964101-89964332	ASIP	chr20:34268853-34269442
MC1R	chr16:89972122-89973175	RALY	chr20:33992993-33994696
MC1R	chr16:89999909-90000235	RALY	chr20:34111451-34112475
MC1R	chr16:90003354-90004475	PIGU	chr20:34516307-34516738
MC1R	chr16:90018701-90020011	PIGU	chr20:34558331-34559514
ANKRD11	chr16:89166002-89166275	PIGU	chr20:34676862-34677389
ANKRD11	chr16:89171536-89171923	PIGU	chr20:34704011-34704764
ANKRD11	chr16:89179211-89179552	PIGU	chr20:34708710-34710438

Os SNPs presentes em cada uma das CGIs foram genotipados e em seguida foi realizada a análise de desequilíbrio de ligação para encontrar blocos de haplótipos presentes nessas regiões. A quantidade de marcadores e blocos de haplótipos presentes nos grupos populacionais AFR e EUR do projeto 1000 Genomes estão organizados na Tabela 12.

Chr	Cana	EU	R	AFR	
CIII	Gene	SNPs	Blocos	SNPs	Blocos
2	РОМС	21	0	45	0
3	MITF	6	0	11	0
5	SLC24A5	14	2	33	0
6	IRF4	38	0	60	4
9	BNC2, TYRP1	25	2	46	1
14	LOC105370627, SLC24A4	11	0	22	1
15	HERC2, OCA2, SLC24A5	59	4	152	11
16	MC1R, ANKRD11, DEF8, TUBB3	265	11	491	13
20	ASIP, PIGU, RALY	46	1	90	2

Tabela 12. Blocos de haplótipos encontrados nos grupos populacionais AFR e EUR do Projeto 1000 Genomes em cada cromossomo que inclui os genes do HIrisPlex-S.

Com exceção do cromossomo 16, que possui os genes *MC1R*, *ANKRD11*, *DEF8* e *TUBB3*, todos os outros apresentaram um número bastante reduzido de blocos de haplótipos de SNPs presentes em ilhas CpG. Esperava-se encontrar uma maior quantidade de blocos de haplótipos em todos os cromossomos, de modo a permitir fazer análises de associação e diferenciar os grupos populacionais (pelo viés de pigmentação) a partir desses blocos. Porém, visto a quantidade limitada de haplótipos encontrados, foi realizada análise de associação indireta entre cada um dos SNPs e a pigmentação da pele.

Assim, utilizando todos os SNPs genotipados pelo projeto 1000 Genomes e incluídos aqueles anteriormente listados na Tabela 8 e os demais presentes no sistema HIrisPlex-S, foram realizadas análises de associação para encontrar quais desses polimorfismos seriam capazes de diferenciar os indivíduos dos diferentes

grupos populacionais ou mesmo estarem relacionados com a pigmentação da pele (uma vez que estavam no próprio sistema HIrisPlex ou na vizinhança de seus genes). Para essa última opção, parte-se de uma aproximação em que os indivíduos das populações africanas possuem majoritariamente pele com pigmentação mais escura, os provenientes de populações europeias a pele majoritariamente mais clara e os do leste asiático uma coloração intermediária. Via de regra, o país de origem ou a ancestralidade individual não dita a coloração da pele (ROCHA, 2020). No entanto, visto a ausência de dados fenotípicos, e considerando as localidades e estratégia de amostragem empregada pelo projeto 1000 Genomes, essa aproximação foi utilizada.

As Tabelas 13, 14 e 15 a seguir listam todos os SNPs que apresentaram um valor de p < 0,05, após ajuste de Benjamini-Hochberg para múltiplos testes nas análises de associação entre os indivíduos dos grupos populacionais europeu (EUR), africano (AFR) e leste-asiático (EAS).

Ao final dos testes de associação, foram encontrados 148 SNPs associados na análise entre a população africana e europeia, 118 entre africana e leste asiática e 132 entre europeia e leste asiática. No total, 203 SNPs diferentes apresentaram valores de p < 0,05 após o ajuste de FDR. Esses polimorfismos, portanto, têm potencial de serem capazes de diferenciar indivíduos entre as populações africanas e europeias, africanas e leste asiáticas e entre europeias e leste asiáticas. Dentre todos esses polimorfismos, 75 apresentaram associação em todas as três análises (Figura 28). Apesar de que em princípio este resultado indique que representem bons candidatos a marcadores informativos de ancestralidade (AIMs), visto que se encontram em regiões alvo de metilação na vizinhança de genes de pigmentação, e as populações consideradas apresentam variação conhecida no fenótipo de pigmentação da pele, os SNPs nesta lista possuem o potencial de refletir as relações entre a epigenética e o processo de melanogênese. Tabela 13. SNPs estatisticamente significantes após a aplicação da correção de Benjamini-Hochberg (BH) em análise de associação entre genótipos e os grupos populacionais africano (pele escura) e europeu (pele clara) do projeto 1000 Genomes. Os SNPs do sistema HIrisPlex-S e os selecionados no item 6.2.1 estão representados em negrito.

Decição (ha29)		Valor de p				
Posição (ngso)	SNP ID	Sem ajuste	Bonferroni	BH		
2:25161836	rs6713396	1,08E-46	2,85E-44	1,14E-45		
2:25168232	rs1009388	4,88E-26	1,29E-23	3,22E-25		
2:25216232	rs10185041	0,0001	0,0336	0,0003		
2:25216393	rs72853661	3,39E-15	8,95E-13	1,54E-14		
3:69739409	rs114935806	3,89E-06	0,0010	0,0091		
3:69739945	rs45519135	0,0067	0,0018	0,0154		
5:33892141	-	0,0158	1	0,0286		
5:33936616	rs79014396	2,06E-07	5,44E-05	6,56E-07		
5:33937646	rs61737265	3,24E-09	8,56E-07	1,13E-08		
5:33937648	rs149752849	0,0038	0,9980	0,0073		
5:33951588	rs16891982	5,14E-29	1,36E-26	3,57E-28		
5:33958854	rs28777	4,35E-72	1,15E-69	8,83E-71		
5:34007753	rs9282595	2,86E-07	7,55E-05	8,88E-07		
5:34007995	rs3195676	3,70E-60	9,76E-58	4,65E-59		
6:292042	rs117766562	7,77E-16	2,05E-13	3,66E-15		
6:292658	rs860102	0,0013	0,0003	3,21E-06		
6:292708	rs558261395	0,0193	1	0,0344		
6:292796	rs3734780	9,19E-25	2,43E-22	5,78E-24		
6:391591	rs551303035	4,17E-06	1,10E-06	1,20E-05		
6:391623	rs6935510	0,0015	0,3928	0,0030		
6:391989	rs2797306	2,51E-67	6,63E-65	3,93E-66		
6:392043	rs6940588	1,98E-17	5,24E-15	9,88E-17		
6:392483	rs113328259	5,40E-06	0,0014	1,53E-05		
6:392783	rs9501998	8,88E-32	2,34E-29	6,33E-31		
6:392866	rs79324228	2,57E-46	6,78E-47	2,61E-45		
6:393604	rs149874008	2,53E-07	6,68E-05	7,95E-07		
6:457748	rs4959270	7,43E-39	1,96E-36	5,94E-38		
9:12709305	rs683	4,21E-88	1,11E-88	1,85E-89		
9:12775489	rs10491742	3,25E-90	8,59E-88	2,86E-88		
9:16727081	rs112392170	0,0040	1	0,0077		
9:16828963	rs11788101	1,93E-25	5,09E-23	1,24E-24		
9:16829029	rs10810641	2,91E-18	7,69E-16	1,51E-17		
9:16858086	rs10756819	9,29E-98	2,45E-92	2,45E-92		
9:16870474	rs71513271	1,09E-26	2,87E-24	7,37E-26		
9:16870503	rs62541923	6,81E-20	1,80E-17	3,67E-19		

9:16870941	rs111567891	4,18E-47	1,10E-44	4,60E-46
9:16871325	rs182046936	0,0014	0,3567	0,0027
11:89178528	rs1042602	5,41E-08	1,43E-05	1,78E-07
11:89284793	rs1126809	5,18E-07	0,0001	1,57E-06
14:92307319	rs12896399	3,20E-39	8,44E-37	2,64E-38
14:92322711	rs116452780	0,0006	0,0001	0,0014
14:92334859	rs2402130	1,74E-61	4,58E-59	2,29E-63
14:92416482	rs17128291	5,89E-18	1,56E-15	2,99E-20
14:92514209	rs71430764	2,23E-05	0,0059	5,95E-05
15:27770245	rs141836561	0,0211	1	0,0371
15:27805134	rs4520797	1,67E-34	4,40E-32	1,22E-33
15:27805191	rs75954287	2,69E-11	7,09E-12	1,03E-10
15:27805438	rs2055291	5,83E-41	1,54E-38	4,96E-40
15:27805544	rs2055290	0,0033	0,8612	0,0064
15:27806436	rs6497236	0,0037	0,9714	0,0072
15:27806478	rs6497237	1,67E-34	4,40E-32	1,22E-33
15:27942626	rs1545397	3,89E-10	1,03E-07	1,39E-09
15:28003579	rs16950781	8,47E-10	0,0002	2,51E-06
15:28003682	rs57242412	2,95E-23	7,79E-18	1,62E-19
15:28026629	rs12441727	3,06E-12	8,09E-10	1,19E-11
15:28042975	rs1470608	3,31E-70	8,73E-68	5,82E-69
15:28096429	rs7168800	1,19E-12	3,15E-10	4,77E-12
15:28096463	rs7164220	1,86E-12	4,90E-10	7,32E-12
15:28096923	rs8026089	2,00E-24	5,28E-22	1,20E-26
15:28099092	rs7495174	0,0027	0,0007	0,0065
15:28099182	rs7497270	0,0047	0,0012	0,0109
15:28107079	rs73379620	1,23E-13	3,26E-11	5,17E-16
15:28107607	rs79494067	4,15E-14	1,10E-08	1,57E-10
15:28111713	rs1129038	2,35E-44	6,21E-42	2,22E-43
15:28117313	rs7495875	1,39E-71	3,68E-69	2,63E-70
15:28117338	rs74007959	0,0003	0,0793	0,0008
15:28120472	rs12913832	5,07E-44	1,34E-41	4,61E-43
15:28132626	rs8025035	4,58E-89	1,21E-86	3,02E-87
15:28208069	rs2238289	4,40E-83	1,16E-80	1,45E-81
15:28214357	rs73362648	3,38E-07	8,93E-05	1,04E-06
15:28214522	rs145517892	4,17E-06	1,10E-06	1,20E-05
15:28251049	rs6497292	1,22E-88	3,21E-86	6,41E-87
15:28285036	rs1667394	2,07E-90	5,45E-88	2,73E-88
15:28403008	rs2595748	5,81E-06	0,0015	1,61E-05
15:28403055	-	0,0003	0,0708	0,0006
15:48134287	rs1426654	5,94E-26	1,57E-20	3,49E-22

16:89171606	rs28702661	0,0012	0,3265	0,0026
16:89171661	rs116168097	7,23E-06	0,0019	1,99E-05
16:89171782	rs12927793	3,69E-83	9,75E-81	1,39E-81
16:89192339	rs75791347	0,0957	0,0253	0,0002
16:89193264	rs73264005	1,80E-16	4,75E-14	8,79E-16
16:89193585	rs3815615	1,37E-06	0,0004	4,00E-06
16:89202444	rs8063985	2,17E-13	5,72E-11	8,94E-13
16:89217377	rs8056572	0,0013	0,3352	0,0026
16:89217401	rs8056585	4,48E-43	1,18E-40	3,95E-42
16:89217456	rs9925542	3,69E-19	9,75E-17	1,95E-18
16:89217674	rs11645912	0,0013	0,3352	0,0026
16:89217675	rs3803723	8,97E-75	2,37E-72	1,97E-73
16:89217822	rs117496293	1,93E-14	5,09E-12	8,34E-14
16:89217878	rs3803722	6,68E-24	1,76E-18	3,83E-20
16:89218141	rs4785609	0,0013	0,3352	0,0026
16:89232872	rs62068538	2,53E-67	6,68E-65	3,93E-66
16:89233376	rs62068545	9,35E-06	0,0025	2,55E-05
16:89247129	rs9783777	4,12E-63	1,09E-60	5,72E-62
16:89247264	rs28627551	1,18E-11	3,12E-06	3,94E-08
16:89247386	rs9783753	4,20E-38	1,11E-35	3,26E-37
16:89247558	rs1531884	5,19E-45	1,37E-42	5,08E-44
16:89247941	rs3859130	2,10E-47	5,54E-45	2,41E-46
16:89248053	rs370792676	0,0061	1	0,0115
16:89279414	rs4785560	1,10E-07	2,89E-05	3,53E-10
16:89280475	rs60520302	0,0208	1	0,0369
16:89281630	rs113527563	0,0002	0,0489	0,0004
16:89305631	rs3829499	0,0003	0,0877	0,0007
16:89305671	rs62070785	5,60E-05	0,0148	0,0001
16:89305919	rs71374103	0,0018	0,0005	0,0044
16:89307008	rs77560414	3,62E-15	9,56E-13	1,62E-14
16:89341843	rs114977459	0,0006	0,1646	0,0013
16:89372115	rs76728532	7,81E-11	2,06E-08	2,90E-10
16:89372259	rs3114863	7,80E-57	2,06E-54	9,36E-56
16:89389807	rs148390804	0,0061	1	0,0115
16:89390314	rs62068595	0,0004	0,0988	0,0008
16:89490068	rs9925045	1,60E-24	4,22E-22	9,81E-24
16:89491041	rs2965963	5,49E-06	0,0014	1,54E-05
16:89491129	rs142235183	0,0040	1	0,0077
16:89507758	rs3809641	1,19E-10	3,15E-08	4,37E-10
16:89508168	rs4785684	2,52E-20	6,64E-18	1,41E-19
16:89508277	rs9935289	0,0003	0,0738	0,0006

16:89508281	rs373540844	0,0156	1	0,0284
16:89537178	rs382745	0,0169	1	0,0304
16:89561052	rs2280370	8,12E-10	2,15E-07	2,86E-12
16:89561263	rs174035	0,0026	0,0007	6,15E-06
16:89574773	rs366576	0,0002	4,50E-05	0,0004
16:89574838	rs377119	4,72E-14	1,25E-11	2,01E-13
16:89575742	rs2946631	4,60E-09	1,21E-06	1,58E-08
16:89576606	rs12933022	1,92E-05	0,0051	5,16E-05
16:89576720	rs12933179	0,0011	0,0003	0,0029
16:89576839	rs1078587	2,05E-10	5,40E-08	7,40E-10
16:89816399	rs78004870	8,04E-16	2,12E-13	3,72E-15
16:89816418	rs72631431	7,48E-16	1,98E-13	3,59E-15
16:89816599	rs1800282	0,0008	0,0002	2,06E-06
16:89816816	rs7204250	3,44E-63	9,07E-61	5,04E-62
16:89816927	rs34784792	0,0006	0,0002	0,0015
16:89919436	rs1805005	7,45E-07	0,0002	2,24E-06
16:89957798	rs8051733	0,0600	0,0159	0,0001
16:89957798 16:90052429	rs8051733 -	0,0600 0,0018	0,0159 0,0005	0,0001 0,0043
16:89957798 16:90052429 16:90052431	rs8051733 - -	0,0600 0,0018 0,0038	0,0159 0,0005 0,0010	0,0001 0,0043 0,0090
16:89957798 16:90052429 16:90052431 16:90052534	rs8051733 - - rs11644045	0,0600 0,0018 0,0038 0,0088	0,0159 0,0005 0,0010 1	0,0001 0,0043 0,0090 0,0163
16:89957798 16:90052429 16:90052431 16:90052534 16:90052536	rs8051733 - - rs11644045 rs11649641	0,0600 0,0018 0,0038 0,0088 0,0088	0,0159 0,0005 0,0010 1 1	0,0001 0,0043 0,0090 0,0163 0,0163
 16:89957798 16:90052429 16:90052431 16:90052534 16:90052536 20:34197406 	rs8051733 - - rs11644045 rs11649641 rs6119471	0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13	0,0159 0,0005 0,0010 1 1 9,75E-11	0,0001 0,0043 0,0090 0,0163 0,0163 1,50E-15
 16:89957798 16:90052429 16:90052431 16:90052534 16:90052536 20:34197406 20:34269192 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017	0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13 1,13E-79	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77	0,0001 0,0043 0,0090 0,0163 0,0163 1,50E-15 3,31E-78
 16:89957798 16:90052429 16:90052431 16:90052534 16:90052536 20:34197406 20:34269192 20:34302857 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017 rs60847955	0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13 1,13E-79 6,89E-12	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77 1,82E-06	0,0001 0,0043 0,0090 0,0163 0,0163 1,50E-15 3,31E-78 2,33E-08
 16:89957798 16:90052429 16:90052534 16:90052536 20:34197406 20:34269192 20:34302857 20:34303394 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017 rs60847955 rs819146	0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13 1,13E-79 6,89E-12 2,33E-79	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77 1,82E-06 6,16E-77	0,0001 0,0090 0,0163 0,0163 1,50E-15 3,31E-78 2,33E-08 6,16E-78
 16:89957798 16:90052429 16:90052534 16:90052536 20:34197406 20:34269192 20:34302857 20:34303394 20:34363402 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017 rs60847955 rs819146 rs62212167	0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13 1,13E-79 6,89E-12 2,33E-79 0,0101	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77 1,82E-06 6,16E-77 1	0,0001 0,0090 0,0163 0,0163 1,50E-15 3,31E-78 2,33E-08 6,16E-78 0,0186
 16:89957798 16:90052429 16:90052534 16:90052534 16:90052536 20:34197406 20:34269192 20:34302857 20:34303394 20:34363402 20:34630286 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017 rs60847955 rs819146 rs62212167 rs2378249	 0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13 1,13E-79 6,89E-12 2,33E-79 0,0101 0,0081 	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77 1,82E-06 6,16E-77 1 1	 0,0001 0,0043 0,0090 0,0163 0,0163 1,50E-15 3,31E-78 2,33E-08 6,16E-78 0,0186 0,0152
 16:89957798 16:90052429 16:90052431 16:90052534 16:90052536 20:34197406 20:34269192 20:34302857 20:34303394 20:34363402 20:34630286 20:34704323 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017 rs60847955 rs819146 rs62212167 rs2378249 rs2378256	0,0600 0,0018 0,0038 0,0088 3,69E-13 1,13E-79 6,89E-12 2,33E-79 0,0101 0,0081 1,08E-14	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77 1,82E-06 6,16E-77 1 1 2,86E-12	 0,0001 0,0043 0,0090 0,0163 0,0163 1,50E-15 3,31E-78 2,33E-08 6,16E-78 0,0186 0,0152 4,76E-14
 16:89957798 16:90052429 16:90052431 16:90052534 16:90052536 20:34197406 20:34269192 20:34303394 20:34363402 20:34630286 20:34704323 20:34704749 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017 rs60847955 rs819146 rs62212167 rs2378249 rs2378256 rs144048781	0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13 1,13E-79 6,89E-12 2,33E-79 0,0101 0,0081 1,08E-14 0,0003	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77 1,82E-06 6,16E-77 1 1 1 2,86E-12 0,0716	 0,0001 0,0090 0,0163 0,0163 1,50E-15 3,31E-78 2,33E-08 6,16E-78 0,0186 0,0152 4,76E-14 0,0006
 16:89957798 16:90052429 16:90052534 16:90052534 16:90052536 20:34197406 20:34269192 20:34303394 20:34363402 20:34630286 20:34704323 20:34704749 20:34709184 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017 rs60847955 rs819146 rs62212167 rs2378249 rs2378256 rs144048781 rs13037664	 0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13 1,13E-79 6,89E-12 2,33E-79 0,0101 0,0081 1,08E-14 0,0003 1,52E-75 	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77 1,82E-06 6,16E-77 1 1 2,86E-12 0,0716 4,01E-73	 0,0001 0,0090 0,0163 0,0163 1,50E-15 3,31E-78 2,33E-08 6,16E-78 0,0186 0,0152 4,76E-14 0,0006 3,65E-74
 16:89957798 16:90052429 16:90052431 16:90052534 16:90052536 20:34197406 20:34269192 20:34303394 20:34363402 20:34630286 20:34704323 20:34704749 20:34709184 20:34709693 	rs8051733 - - rs11644045 rs11649641 rs6119471 rs6058017 rs60847955 rs819146 rs62212167 rs2378249 rs2378256 rs144048781 rs13037664 rs116277169	 0,0600 0,0018 0,0038 0,0088 0,0088 3,69E-13 1,13E-79 6,89E-12 2,33E-79 0,0101 0,0081 1,08E-14 0,0003 1,52E-75 6,28E-08 	0,0159 0,0005 0,0010 1 1 9,75E-11 2,98E-77 1,82E-06 6,16E-77 1 1 2,86E-12 0,0716 4,01E-73 1,66E-05	 0,0001 0,0090 0,0163 0,0163 1,50E-15 3,31E-78 2,33E-08 6,16E-78 0,0186 0,0152 4,76E-14 0,0006 3,65E-74 2,05E-07

Tabela 14. SNPs estatisticamente significantes após a aplicação da correção de Benjamini-Hochberg (BH) em análise de associação entre genótipos e os grupos populacionais africano (pele escura) e leste asiática (pele intermediária) do projeto 1000 Genomes. Os SNPs do sistema HIrisPlex-S e os selecionados no item 6.2.1 estão representados em negrito.

Posição (ba38)			Valor de <i>p</i>	
Posição (ngso)	SNP ID	Sem ajuste	Bonferroni	BH
2:25161836	rs6713396	3,06E-16	6,71E-14	1,24E-15
2:25168232	rs1009388	1,48E-08	3,23E-06	4,31E-08
2:25216393	rs72853661	6,87E-18	1,50E-15	2,84E-17
5:33936616	rs79014396	0,0004	0,0834	0,0010
5:33958854	rs28777	0,0114	1	0,0221
5:34007995	rs3195676	4,13E-29	9,05E-27	2,16E-28
6:292042	rs117766562	8,95E-09	1,96E-06	2,68E-08
6:292342	rs115977262	0,0041	0,9033	0,0084
6:292658	rs860102	6,07E-08	1,33E-05	1,70E-07
6:391623	rs6935510	1,58E-06	0,0003	4,21E-09
6:391989	rs2797306	0,0991	0,0217	0,0002
6:392340	rs117758049	0,0008	0,0002	0,0020
6:392783	rs9501998	0,0120	1	0,0231
6:392866	rs79324228	0,0215	1	0,0395
6:457748	rs4959270	2,55E-12	5,59E-10	8,87E-12
9:12709305	rs683	2,80E-10	6,12E-11	8,87E-13
9:12775489	rs10491742	0,0209	0,0046	0,0473
9:16829029	rs10810641	4,27E-84	9,35E-82	8,33E-82
9:16858086	rs10756819	7,61E-87	1,67E-81	8,33E-82
9:16870423	rs10810649	3,53E-57	7,74E-55	4,28E-59
9:16870474	rs71513271	1,37E-06	0,0003	3,70E-06
9:16870941	rs111567891	2,15E-34	4,71E-32	1,38E-33
14:92307319	rs12896399	3,76E-32	8,23E-30	2,17E-31
14:92334859	rs2402130	2,58E-80	5,66E-78	1,13E-78
14:92416482	rs17128291	1,28E-11	2,81E-09	4,25E-14
15:27770358	rs529412097	0,0067	1	0,0133
15:27805134	rs4520797	2,55E-08	5,59E-06	7,26E-08
15:27805438	rs2055291	1,72E-49	3,76E-47	1,57E-48
15:27805544	rs2055290	1,10E-14	2,42E-12	4,09E-14
15:27806436	rs6497236	1,00E-14	2,20E-12	3,79E-14
15:27806478	rs6497237	2,55E-08	5,59E-06	7,26E-08
15:27902796	rs17674604	2,83E-39	6,20E-37	2,07E-38
15:27903014	rs28448549	2,19E-50	4,79E-48	2,08E-49
15:27903091	rs4778130	4,65E-51	1,02E-48	4,63E-50
15:27942626	rs1545397	5,50E-46	1,20E-43	4,63E-48
15:28003682	rs57242412	6,21E-12	1,36E-09	2,09E-11

15:28026629	rs12441727	4,23E-22	9,26E-17	1,85E-18
15:28042975	rs1470608	3,70E-14	8,11E-12	1,35E-13
15:28094851	rs116792395	5,61E-12	1,23E-09	1,92E-14
15:28096429	rs7168800	4,48E-06	0,0010	1,18E-05
15:28096463	rs7164220	1,65E-68	3,62E-66	2,79E-67
15:28096923	rs8026089	2,48E-24	5,43E-22	1,21E-23
15:28099092	rs7495174	4,54E-77	9,94E-75	1,24E-75
15:28099182	rs7497270	3,37E-77	7,39E-78	1,06E-75
15:28107079	rs73379620	5,49E-21	1,20E-18	2,51E-20
15:28107607	rs79494067	9,12E-54	2,00E-51	9,51E-53
15:28117313	rs7495875	1,95E-76	4,27E-71	4,46E-72
15:28132626	rs8025035	2,66E-31	5,82E-29	1,49E-30
15:28251049	rs6497292	3,35E-32	7,33E-30	1,98E-31
15:28285036	rs1667394	2,47E-32	5,42E-30	1,51E-31
15:28403008	rs2595748	0,0004	0,0898	0,0009
15:48134287	rs1426654	0,0006	0,0001	0,0014
16:89171544	rs190099280	5,70E-18	1,25E-15	2,40E-17
16:89171782	rs12927793	2,26E-11	4,95E-09	7,28E-11
16:89171820	rs117058444	9,12E-19	2,00E-16	3,92E-18
16:89179482	rs2287359	1,07E-71	2,33E-69	2,12E-70
16:89192339	rs75791347	1,32E-39	2,90E-37	1,04E-38
16:89193264	rs73264005	3,71E-57	8,13E-55	4,28E-59
16:89193585	rs3815615	5,93E-78	1,30E-75	2,17E-76
16:89202444	rs8063985	0,0173	1	0,0325
16:89217401	rs8056585	3,55E-30	7,78E-28	1,90E-29
16:89217456	rs9925542	1,45E-11	3,18E-06	4,29E-08
16:89217675	rs3803723	6,72E-67	1,47E-64	1,05E-65
16:89217878	rs3803722	5,98E-10	1,31E-07	1,84E-09
16:89218138	rs373411720	0,0002	0,0476	0,0005
16:89218141	rs4785609	0,0006	0,1276	0,0012
16:89232872	rs62068538	6,17E-24	1,35E-21	2,94E-23
16:89233376	-	0,0205	1	0,0381
16:89247129	rs9783777	5,00E-20	1,09E-17	2,23E-19
16:89247264	rs28627551	2,36E-38	5,17E-36	1,67E-37
16:89247386	rs9783753	9,23E-17	2,02E-11	3,31E-13
16:89247558	rs1531884	1,70E-22	3,72E-20	7,90E-22
16:89247941	rs3859130	1,84E-24	4,02E-22	9,13E-24
16:89247993	rs147160524	1,42E-11	3,12E-09	4,65E-14
16:89279414	rs4785560	2,97E-33	6,51E-31	1,86E-35
16:89280475	rs60520302	0,0210	0,0046	0,0473
16:89281630	rs113527563	1,09E-37	2,40E-35	7,48E-37

16.89286270	rs2353028	2 04F-73	4 46F-71	4 46F-72
16:89305631	rs3829499	8.91E-15	1.95E-12	3.42E-14
16:89307008	rs77560414	2.93E-18	6.42E-13	1.15E-14
16:89317317	rs3114908	0,0004	0,0853	9,92E-07
16:89341883	rs138402668	7,74E-35	1,70E-32	, 5,14E-34
16:89341909	-	0,0004	0,0895	0,0009
16:89341925	-	0,0143	1	0,0272
16:89341954	rs118035452	2,12E-06	0,0005	0,0052
16:89341966	rs111637076	0,0010	0,0002	2,45E-06
16:89341970	-	0,0139	0,0031	3,28E-05
16:89372115	rs76728532	2,80E-09	6,13E-07	8,51E-12
16:89372259	rs3114863	2,87E-70	6,28E-68	5,23E-69
16:89389807	rs148390804	0,0172	1	0,0325
16:89390314	rs62068595	0,0002	0,0410	0,0004
16:89489779	-	0,0089	1	0,0175
16:89490068	rs9925045	6,27E-40	1,37E-37	5,09E-39
16:89491129	rs142235183	0,0077	1	0,0152
16:89507758	rs3809641	2,33E-46	5,10E-44	2,04E-45
16:89508168	rs4785684	3,29E-57	7,21E-55	4,24E-56
16:89508277	rs9935289	1,34E-30	2,93E-28	7,31E-30
16:89537178	rs382745	3,72E-27	8,15E-25	1,90E-26
16:89561052	rs2280370	1,22E-12	2,66E-13	4,29E-12
16:89574773	rs366576	3,87E-10	8,48E-08	1,21E-09
16:89574838	rs377119	6,73E-07	0,0001	1,87E-06
16:89575742	rs2946631	7,38E-19	1,62E-13	2,94E-15
16:89576606	rs12933022	0,0598	0,0131	0,0001
16:89576839	rs1078587	1,36E-06	2,97E-07	3,70E-06
16:89816399	rs78004870	1,87E-63	4,09E-61	2,73E-62
16:89816418	rs72631431	2,68E-61	5,88E-59	3,67E-60
16:89816816	rs7204250	1,96E-39	4,30E-37	1,48E-38
16:89816927	rs34784792	3,90E-05	0,0085	0,0001
16:89957798	rs8051733	0,0011	0,2338	0,0022
16:90052429	-	0,0033	0,0007	7,81E-06
16:90052431	-	0,0030	0,0007	0,0072
16:90052534	rs11644045	0,0161	0,0035	3,70E-05
16:90052536	rs11649641	0,0161	0,0035	3,70E-05
16:90053089	rs370004616	0,0007	0,1511	0,0014
20:34269192	rs6058017	9,16E-81	2,01E-78	6,69E-79
20:34303394	rs819146	1,79E-80	3,92E-78	9,80E-79
20:34677128	rs184103200	0,0061	1	0,0122
20:34709184	rs13037664	5,68E-57	1,24E-51	6,22E-56

Tabela 15. SNPs estatisticamente significantes após a aplicação da correção de Benjamini-Hochberg (BH) em análise de associação entre genótipos e os grupos populacionais europeu (pele clara) e lesteasiático (pele intermediária) do projeto 1000 Genomes. Os SNPs do sistema HIrisPlex-S e os selecionados no item 6.2.1 estão representados em negrito.

Posição (ba38)			Valor de <i>p</i>	
Posição (ngso)	SNP ID	Sem ajuste	Bonferroni	BH
2:25161300	rs2071345	5,94E-38	1,36E-35	4,25E-34
2:25161603	rs28930368	1,88E-37	4,31E-32	1,31E-33
2:25161836	rs6713396	1,82E-06	0,0004167	4,34E-06
2:25168232	rs1009388	1,92E-31	4,39E-29	1,22E-30
5:33951588	rs16891982	2,11E-34	4,84E-32	1,42E-33
5:33958854	rs28777	4,66E-51	1,07E-48	4,64E-50
5:34007995	rs3195676	4,64E-10	1,06E-07	1,52E-09
6:292042	rs117766562	1,37E-26	3,13E-24	7,63E-26
6:292658	rs860102	3,69E-05	8,44E-03	9,70E-05
6:292796	rs3734780	9,81E-28	2,25E-25	5,62E-27
6:391623	rs6935510	0,0029	0,6528	0,0053
6:391989	rs2797306	3,69E-54	8,45E-52	4,69E-53
6:392340	rs117758049	1,27E-08	2,92E-06	3,94E-08
6:392783	rs9501998	7,45E-37	1,71E-34	5,69E-36
6:392866	rs79324228	4,60E-35	1,05E-32	3,40E-34
6:393359	rs74746812	9,64E-12	2,21E-09	3,25E-11
6:424291	rs532002797	0,0011	0,2465	0,0021
6:457748	rs4959270	6,98E-08	1,60E-05	2,10E-07
9:12709305	rs683	4,71E-54	1,08E-51	5,67E-53
9:12775489	rs10491742	1,81E-53	4,15E-51	2,07E-52
9:16829029	rs10810641	1,92E-73	4,40E-71	6,28E-72
9:16858086	rs10756819	3,74E-06	8,56E-04	1,04E-05
9:16870423	rs10810649	1,56E-58	3,58E-56	2,38E-57
9:16870474	rs71513271	2,61E-06	5,97E-04	7,46E-06
9:16870941	rs111567891	0,0004	0,0820	0,0007
11:89178528	rs1042602	1,16E-12	2,65E-10	4,02E-15
11:89277878	rs1393350	1,69E-16	3,86E-14	6,54E-16
11:89284793	rs1126809	1,64E-06	3,76E-07	4,76E-06
14:92307319	rs12896399	0,0001	0,0327	0,0004
14:92334859	rs2402130	6,69E-18	1,53E-15	3,00E-17
14:92416482	rs17128291	0,0007	0,0001547	0,0017
15:27771419	rs17651002	0,0092	1	0,0167
15:27805134	rs4520797	1,54E-16	3,54E-14	6,10E-16
15:27805438	rs2055291	0,0009	0,0002113	0,0022
15:27805544	rs2055290	1,30E-16	2,99E-14	5,33E-16

15:27806436 rs6497236 1,30E-16 2,99E-14 5,33E-16 15:27806478 rs6497237 1,54E-16 3,54E-14 6,10E-16 15:279020796 rs17674604 2,59E-34 5,92E-32 1,69E-33 15:27903091 rs28448549 5,39E-45 1,23E-42 4,41E-44 15:27903091 rs778130 5,39E-45 1,23E-42 4,41E-44 15:27903091 rs71545397 1,22E-51 2,79E-49 1,27E-50 15:28026629 rs12441727 2,76E-06 6,32E-04 7,80E-09 15:28026629 rs1470608 1,14E-73 2,61E-71 4,35E-72 15:28096429 rs716820 0,0002 0,0395 0,0004 15:28099092 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:28107607 rs79494067 1,58E-57 3,61E-55 2,12E-56 15:2811713 rs1212032 1,95E-09 3,44E-07 6,11E-09 15:28120472 rs12913832 1,95E-09 3,44E-07 6,11E-09 15:2820506 rs167394					
15:27806478 rs6497237 1,54E-16 3,54E-14 6,10E-16 15:27902796 rs17674604 2,59E-34 5,92E-32 1,09E-33 15:27903014 rs28448549 5,39E-45 1,23E-42 4,41E-44 15:27903091 rs4778130 5,39E-45 1,23E-42 4,41E-44 15:27942626 rs1545397 1,22E-51 2,79E-49 1,27E-50 15:28003682 rs57242412 3,80E-05 8,71E-03 9,89E-05 15:28042975 rs1470608 1,14E-73 2,61E-71 4,35E-72 15:28096429 rs716800 0,0002 0,0395 0,0004 15:28096429 rs7164220 1,52E-78 3,48E-77 2,02E-79 15:28099902 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:28107607 rs739394067 1,58E-57 3,61E-55 2,12E-56 15:28120472 rs1213322 1,95E-09 4,46E-07 6,06E-71 15:2821047 rs12913322 1,95E-09 4,6E-07 6,06E-71 15:28210472 rs129133	15:27806436	rs6497236	1,30E-16	2,99E-14	5,33E-16
15:27902796 rs17674604 2,59E-34 5,92E-32 1,69E-33 15:27903014 rs28448549 5,39E-45 1,23E-42 4,41E-44 15:27903091 rs1545397 1,22E-51 2,79E-49 1,27E-50 15:27905172 rs1800407 0,0053 0,001215 0,0125 15:2003662 rs57242412 3,80E-05 8,71E-03 9,89E-05 15:280026629 rs12441727 2,76E-06 6,32E-04 7,80E-09 15:280042975 rs146800 0,0002 0,0395 0,0004 15:28096423 rs7164220 1,52E-78 3,48E-76 7,20E-77 15:28099082 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:28099082 rs7497270 2,63E-81 6,06E-77 2,02E-79 15:28107607 rs79494067 1,58E-57 3,61E-55 2,12E-56 15:28120472 rs1293832 1,95E-09 4,46E-07 6,11E-09 15:2821047 rs1293282 2,65E-72 6,06E-71 1,07E-45 15:2821506 rs1667394 <td>15:27806478</td> <td>rs6497237</td> <td>1,54E-16</td> <td>3,54E-14</td> <td>6,10E-16</td>	15:27806478	rs6497237	1,54E-16	3,54E-14	6,10E-16
15:27903014 rs28448549 5.39E-45 1.23E-42 4.41E-44 15:27903091 rs1778130 5.39E-45 1.23E-42 4.41E-44 15:27903071 rs1800407 0.0053 0.001215 0.01251 15:27985172 rs1800407 0.0053 0.001215 0.89E-05 15:28003882 rs57242412 3.80E-05 8.71E-03 9.89E-05 15:28042975 rs1470608 1.14E-73 2.61E-71 4.35E-72 15:28099092 rs7168200 0.0002 0.0395 0.0004 15:28099092 rs7495174 2.64E-81 6.0E-79 2.02E-79 15:2809912 rs7495174 2.64E-81 6.0E-79 2.02E-79 15:280107607 rs79494067 1.58E-57 3.61E-55 2.12E-56 15:281207472 rs12913832 1.95E-09 4.46E-07 6.11E-09 15:28120626 rs228289 2.65E-72 6.06E-71 1.07E-45 15:28208069 rs2238289 2.65E-72 6.06E-71 1.07E-45 15:2820306 rs1667394	15:27902796	rs17674604	2,59E-34	5,92E-32	1,69E-33
15:27903091 Is4778130 5,39E-45 1,23E-42 4,41E-44 15:27985172 rs1545397 1,22E-51 2,79E-49 1,27E-50 15:27985172 rs1800407 0,0053 0,001215 0,0125 15:28003682 rs57242412 3,80E-05 8,71E-03 9,89E-05 15:28026629 rs12441727 2,76E-06 6,32E-04 7,80E-09 15:28096429 rs7168800 0,0002 0,0395 0,0004 15:28096429 rs7168800 0,0002 0,0395 0,0004 15:28099092 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:28099182 rs7497270 2,63E-81 6,02E-73 2,02E-79 15:28107607 rs7494067 1,58E-67 3,64E-07 6,11E-09 15:28120472 rs129382 1,95E-09 4,46E-07 6,11E-09 15:28120472 rs129038 1,68E-09 3,84E-07 5,33E-09 15:28208069 rs2238289 2,65E-72 6,06E-70 6,06E-71 15:28208008 rs1667394 2,21E-70 5,07E-68 4,22E-69 15:28204009 rs	15:27903014	rs28448549	5,39E-45	1,23E-42	4,41E-44
15:27942626 rs1545397 1,2E-51 2,79E-49 1,27E-50 15:27985172 rs1800407 0,0053 0,001215 0,0125 15:28003682 rs572424112 3,80E-05 8,71E-03 9,89E-05 15:28026629 rs12441727 2,76E-06 6,32E-04 7,80E-09 15:28042975 rs1470608 1,14E-73 2,61E-71 4,35E-72 15:28096429 rs7168800 0,0002 0,0395 0,0004 15:28099092 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:28099182 rs7497270 2,63E-81 6,02E-79 2,02E-79 15:28107607 rs129382 1,95E-09 3,84E-07 5,33E-09 15:28120272 rs129382 1,95E-09 3,84E-07 5,33E-09 15:28208069 rs2238289 2,65E-72 6,06E-71 1,07E-45 15:28203008 rs167394 2,21E-70 5,07E-68 4,22E-69 15:28203008 rs167394 2,21E-70 5,07E-68 4,22E-69 15:28203008 rs1667394	15:27903091	rs4778130	5,39E-45	1,23E-42	4,41E-44
15:27985172 rs1800407 0,0053 0,01215 0,0125 15:28003682 rs57242412 3,80E-05 8,71E-03 9,89E-05 15:2802629 rs12441727 2,76E-06 6,32E-04 7,80E-09 15:28042975 rs116800 0,0002 0,0395 0,0004 15:28096429 rs7168800 0,0002 0,0395 0,0004 15:2809902 rs7495174 2,64E-81 6,0EE-79 2,02E-79 15:28099182 rs7497270 2,63E-81 6,02E-79 2,02E-79 15:28107607 rs79494067 1,58E-57 3,61E-55 2,12E-56 15:28120472 rs12913832 1,95E-09 4,46E-07 6,11E-09 15:28208069 rs2238289 2,65E-72 6,06E-70 6,06E-71 15:2820306 rs1667394 2,21E-70 5,07E-68 4,22E-65 15:282403008 rs2595748 0,0129 1 0,0223 16:89171784 rs190099280 4,98E-16 1,14E-13 1,90E-15 16:89171782 rs139759411 1	15:27942626	rs1545397	1,22E-51	2,79E-49	1,27E-50
15:28003682 rs57242412 3,80E-05 8,71E-03 9,89E-05 15:28026629 rs12441727 2,76E-06 6,32E-04 7,80E-09 15:28042975 rs1470608 1,14E-73 2,61E-71 4,35E-72 15:28096429 rs7168200 0,0002 0,0395 0,0004 15:28099092 rs7495174 2,64E-81 6,0EE-79 2,02E-79 15:28099182 rs7497270 2,63E-81 6,02E-79 2,02E-79 15:28107607 rs7494067 1,58E-57 3,61E-55 2,12E-56 15:2811713 rs1129038 1,68E-09 3,84E-07 5,33E-09 15:2810266 rs8025035 1,18E-47 2,70E-45 1,13E-46 15:28208069 rs2238289 2,65E-72 6,06E-70 6,06E-71 15:28208036 rs1667394 2,21E-70 5,07E-68 4,22E-69 15:28403008 rs2595748 0,0129 1 0,0223 16:89171544 rs190099280 4,98E-16 1,14E-13 1,90E-15 16:89171782 rs12927793	15:27985172	rs1800407	0,0053	0,001215	0,0125
15:28026629 rs12441727 2,76E-06 6,32E-04 7,80E-09 15:28042975 rs1470608 1,14E-73 2,61E-71 4,35E-72 15:28096429 rs7168800 0,0002 0,0395 0,0004 15:28099092 rs7164220 1,52E-78 3,48E-76 7,20E-77 15:28099092 rs7495174 2,64E-81 6,02E-79 2,02E-79 15:28099182 rs7497270 2,63E-81 6,02E-79 2,02E-79 15:28107607 rs79494067 1,58E-57 3,61E-55 2,12E-56 15:2811713 rs1129038 1,68E-09 3,84E-07 6,11E-09 15:28120472 rs12913832 1,95E-09 4,46E-07 6,11E-09 15:28208069 rs2238289 2,65E-72 6,06E-70 6,06E-71 15:28208036 rs1667394 2,21E-70 5,07E-68 4,22E-69 15:28403008 rs2595748 0,0129 1 0,0223 16:89171544 rs190099280 4,98E-16 1,14E-13 1,90E-15 16:8917152 rs1297793	15:28003682	rs57242412	3,80E-05	8,71E-03	9,89E-05
15:28042975 rs1470608 1,14E-73 2,61E-71 4,35E-72 15:28096429 rs7168800 0,0002 0,0395 0,0004 15:28096429 rs7164220 1,52E-78 3,48E-76 7,20E-77 15:28099092 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:28099182 rs7497270 2,63E-81 6,02E-79 2,02E-79 15:28107607 rs79494067 1,58E-57 3,61E-55 2,12E-56 15:2811713 rs1129038 1,68E-09 3,84E-07 5,33E-09 15:2810472 rs12913832 1,95E-09 4,46E-07 6,11E-09 15:28208069 rs2238289 2,65E-72 6,06E-71 1,52E-69 15:2820306 rs6497292 1,17E-46 2,67E-47 1,07E-45 15:28285036 rs1667394 2,21E-70 5,07E-68 4,22E-69 15:28403008 rs2595748 0,0129 1 0,0223 16:89171711 rs2270415 6,15E-13 1,41E-10 2,17E-12 16:89171780 rs139759411	15:28026629	rs12441727	2,76E-06	6,32E-04	7,80E-09
15:28096429 rs7168800 0,0002 0,0395 0,0004 15:28096463 rs7164220 1,52E-78 3,48E-76 7,20E-77 15:28099092 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:2809182 rs7497270 2,63E-81 6,02E-79 2,02E-79 15:28107607 rs79494067 1,58E-57 3,61E-55 2,12E-56 15:2811713 rs1129038 1,68E-09 3,84E-07 5,33E-09 15:2810472 rs12913832 1,95E-09 4,46E-07 6,11E-09 15:2810266 rs6025035 1,18E-47 2,70E-45 1,13E-46 15:28208069 rs2238289 2,65E-72 6,06E-70 6,06E-71 15:28245036 rs1667394 2,21E-70 5,07E-68 4,22E-69 15:282403008 rs2595748 0,0129 1 0,0223 16:89171711 rs2270415 6,15E-13 1,41E-10 2,17E-12 16:89171782 rs181394351 0,0029 0,6728 0,0054 16:89171782 rs12927793 <td< td=""><td>15:28042975</td><td>rs1470608</td><td>1,14E-73</td><td>2,61E-71</td><td>4,35E-72</td></td<>	15:28042975	rs1470608	1,14E-73	2,61E-71	4,35E-72
15:28096463 rs7164220 1,52E-78 3,48E-76 7,20E-77 15:28099092 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:28099182 rs7497270 2,63E-81 6,02E-79 2,02E-79 15:28107607 rs79494067 1,58E-57 3,61E-55 2,12E-56 15:2811713 rs1129038 1,68E-09 3,84E-07 5,33E-09 15:28132626 rs8025035 1,18E-47 2,70E-45 1,13E-46 15:28208069 rs2238289 2,65E-72 6,06E-71 6,06E-71 15:28251049 rs6497292 1,17E-46 2,67E-47 1,07E-45 15:2825036 rs1667394 2,21E-70 5,07E-68 4,22E-69 15:28403008 rs2595748 0,0129 1 0,0223 16:89171714 rs1290099280 4,98E-16 1,14E-10 2,17E-12 16:89171738 rs181394351 0,0029 0,6728 0,0054 16:89171782 rs12927793 4,34E-64 9,93E-62 7,09E-63 16:89171807 rs139759411	15:28096429	rs7168800	0,0002	0,0395	0,0004
15:28099092 rs7495174 2,64E-81 6,06E-79 2,02E-79 15:28099182 rs7497270 2,63E-81 6,02E-79 2,02E-79 15:28107607 rs79494067 1,58E-57 3,61E-55 2,12E-56 15:2811713 rs1129038 1,68E-09 3,84E-07 5,33E-09 15:28120472 rs12913832 1,95E-09 4,46E-07 6,11E-09 15:28208069 rs2238289 2,65E-72 6,06E-70 6,06E-71 15:28251049 rs6497292 1,17E-46 2,67E-47 1,07E-45 15:2826036 rs1667394 2,21E-70 5,07E-68 4,22E-69 15:28403008 rs2595748 0,0129 1 0,0223 16:89171754 rs190099280 4,98E-16 1,14E-10 2,17E-12 16:89171738 rs181394351 0,0029 0,6728 0,0054 16:89171782 rs12927793 4,34E-64 9,93E-62 7,09E-63 16:89171807 rs139759411 1,80E-15 4,12E-10 6,15E-12 16:89171802 rs117273249 <td>15:28096463</td> <td>rs7164220</td> <td>1,52E-78</td> <td>3,48E-76</td> <td>7,20E-77</td>	15:28096463	rs7164220	1,52E-78	3,48E-76	7,20E-77
15:28099182rs74972702,63E-816,02E-792,02E-7915:28107607rs794940671,58E-573,61E-552,12E-5615:28111713rs11290381,68E-093,84E-075,33E-0915:28120472rs129138321,95E-094,46E-076,11E-0915:28132626rs80250351,18E-472,70E-451,13E-4615:28208069rs22382892,65E-726,06E-706,06E-7115:28251049rs64972921,17E-462,67E-471,07E-4515:2825036rs16673942,21E-705,07E-684,22E-6915:28403008rs25957480,012910,022316:891717544rs1900992804,98E-161,14E-131,90E-1516:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171802rs1170584441,09E-152,50E-134,03E-1516:8917942rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89179544rs732640052,54E-205,82E-181,27E-1916:89139265rs1452515020,010510,018416:89139365rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202611rs1509676584,22E-179,65E-151,82E-16 </td <td>15:28099092</td> <td>rs7495174</td> <td>2,64E-81</td> <td>6,06E-79</td> <td>2,02E-79</td>	15:28099092	rs7495174	2,64E-81	6,06E-79	2,02E-79
15:28107607rs794940671,58E-573,61E-552,12E-5615:28111713rs11290381,68E-093,84E-075,33E-0915:28120472rs129138321,95E-094,46E-076,11E-0915:28132626rs80250351,18E-472,70E-451,13E-4615:28208069rs22382892,65E-726,06E-706,06E-7115:28251049rs64972921,17E-462,67E-471,07E-4515:2825036rs16673942,21E-705,07E-684,22E-6915:28403008rs25957480,012910,022316:89171544rs1900992804,98E-161,14E-131,90E-1516:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171802rs1170584441,09E-152,50E-134,03E-1516:8917942rs22873593,76E-668,60E-646,62E-6516:8917942rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89201529rs1120834490,00010,02910,000316:8920361rs1509676584,22E-179,65E-151,82E-1616:89217401rs8065850,00200,46320,039 </td <td>15:28099182</td> <td>rs7497270</td> <td>2,63E-81</td> <td>6,02E-79</td> <td>2,02E-79</td>	15:28099182	rs7497270	2,63E-81	6,02E-79	2,02E-79
15:28111713rs11290381,68E-093,84E-075,33E-0915:28120472rs129138321,95E-094,46E-076,11E-0915:28132626rs80250351,18E-472,70E-451,13E-4615:28208069rs22382892,65E-726,06E-706,06E-7115:28251049rs64972921,17E-462,67E-471,07E-4515:28285036rs16673942,21E-705,07E-684,22E-6915:28403008rs25957480,012910,022316:89171544rs1900992804,98E-161,14E-131,90E-1516:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171800rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:8917947rs22873593,76E-668,60E-646,62E-6516:89199462rs2873593,76E-668,60E-646,62E-6516:89199464rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193265rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202641rs1509676584,22E-179,65E-151,82E-1616:89217401rs80639857,70E-061,76E-032,10E-05 <tr< td=""><td>15:28107607</td><td>rs79494067</td><td>1,58E-57</td><td>3,61E-55</td><td>2,12E-56</td></tr<>	15:28107607	rs79494067	1,58E-57	3,61E-55	2,12E-56
15:28120472rs129138321,95E-094,46E-076,11E-0915:28132626rs80250351,18E-472,70E-451,13E-4615:28208069rs22382892,65E-726,06E-706,06E-7115:28251049rs64972921,17E-462,67E-471,07E-4515:28285036rs16673942,21E-705,07E-684,22E-6915:28403008rs25957480,012910,022316:89171544rs1900992804,98E-161,14E-131,90E-1516:89171714rs22704156,15E-131,41E-102,17E-1216:89171782rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171902rs1172732490,00140,33070,002816:8917947rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:8919239rs757913475,46E-231,25E-232,91E-2216:89193265rs1452515020,010510,018416:8913259rs1120834490,00010,02910,000316:89201529rs1120834490,00010,02910,000316:89202641rs40639857,70E-661,76E-032,10E-0516:89217401rs80639857,70E-661,76E-032,10E-0516:	15:28111713	rs1129038	1,68E-09	3,84E-07	5,33E-09
15:28132626rs80250351,18E-472,70E-451,13E-4615:28208069rs22382892,65E-726,06E-706,06E-7115:28251049rs64972921,17E-462,67E-471,07E-4515:28285036rs16673942,21E-705,07E-684,22E-6915:28403008rs25957480,012910,022316:89171544rs1900992804,98E-161,14E-131,90E-1516:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171820rs1170584441,09E-152,50E-134,03E-1516:89171820rs1177232490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179482rs22873584,68E-211,07E-182,38E-2016:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193264rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:8921745	15:28120472	rs12913832	1,95E-09	4,46E-07	6,11E-09
15:28208069rs22382892,65E-726,06E-706,06E-7115:28251049rs64972921,17E-462,67E-471,07E-4515:28285036rs16673942,21E-705,07E-684,22E-6915:28403008rs25957480,012910,022316:89171544rs1900992804,98E-161,14E-131,90E-1516:89171711rs22704156,15E-131,41E-102,17E-1216:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171820rs1170584441,09E-152,50E-134,03E-1516:89171820rs1170584441,09E-152,50E-134,03E-1516:89179482rs22873593,76E-668,60E-646,62E-6516:89179482rs22873584,68E-211,07E-182,38E-2016:8919507rs801753468,53E-181,95E-153,76E-1716:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0055 </td <td>15:28132626</td> <td>rs8025035</td> <td>1,18E-47</td> <td>2,70E-45</td> <td>1,13E-46</td>	15:28132626	rs8025035	1,18E-47	2,70E-45	1,13E-46
15:28251049rs64972921,17E-462,67E-471,07E-4515:28285036rs16673942,21E-705,07E-684,22E-6915:28403008rs25957480,012910,022316:89171544rs1900992804,98E-161,14E-131,90E-1516:89171711rs22704156,15E-131,41E-102,17E-1216:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171807rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:89179482rs22873584,68E-211,07E-182,38E-2016:89179547rs22873584,68E-211,07E-182,38E-2016:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193265rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	15:28208069	rs2238289	2,65E-72	6,06E-70	6,06E-71
15:28285036rs16673942,21E-705,07E-684,22E-6915:28403008rs25957480,012910,022316:89171544rs1900992804,98E-161,14E-131,90E-1516:89171711rs22704156,15E-131,41E-102,17E-1216:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171807rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80568550,00200,46320,003916:89217456rs99255420,00030,05970,0005	15:28251049	rs6497292	1,17E-46	2,67E-47	1,07E-45
15:28403008rs25957480,012910,022316:89171544rs1900992804,98E-161,14E-131,90E-1516:89171711rs22704156,15E-131,41E-102,17E-1216:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171807rs1397594111,80E-152,50E-134,03E-1516:89171800rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179472rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,27E-1916:8919326516:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:8920361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	15:28285036	rs1667394	2,21E-70	5,07E-68	4,22E-69
16:89171544rs1900992804,98E-161,14E-131,90E-1516:89171711rs22704156,15E-131,41E-102,17E-1216:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171807rs1170584441,09E-152,50E-134,03E-1516:89171820rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193265rs1452515020,010510,00316:8920361rs1509676584,22E-179,65E-151,82E-1616:8920361rs1509676584,22E-179,65E-151,82E-1616:89217401rs80639857,70E-061,76E-032,10E-0516:89217456rs99255420,00030,05970,0005	15:28403008	rs2595748	0,0129	1	0,0223
16:89171711rs22704156,15E-131,41E-102,17E-1216:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171807rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89171544	rs190099280	4,98E-16	1,14E-13	1,90E-15
16:89171738rs1813943510,00290,67280,005416:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171820rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:8919239rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89201529rs1120834490,00010,02910,000316:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89171711	rs2270415	6,15E-13	1,41E-10	2,17E-12
16:89171782rs129277934,34E-649,93E-627,09E-6316:89171807rs1397594111,80E-154,12E-106,15E-1216:89171820rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89201529rs1120834490,00010,02910,000316:89202641rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89171738	rs181394351	0,0029	0,6728	0,0054
16:89171807rs1397594111,80E-154,12E-106,15E-1216:89171820rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89171782	rs12927793	4,34E-64	9,93E-62	7,09E-63
16:89171820rs1170584441,09E-152,50E-134,03E-1516:89171902rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89171807	rs139759411	1,80E-15	4,12E-10	6,15E-12
16:89171902rs1172732490,00140,33070,002816:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89171820	rs117058444	1,09E-15	2,50E-13	4,03E-15
16:89179482rs22873593,76E-668,60E-646,62E-6516:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89171902	rs117273249	0,0014	0,3307	0,0028
16:89179547rs22873584,68E-211,07E-182,38E-2016:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89179482	rs2287359	3,76E-66	8,60E-64	6,62E-65
16:89191507rs801753468,53E-181,95E-153,76E-1716:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89179547	rs2287358	4,68E-21	1,07E-18	2,38E-20
16:89192339rs757913475,46E-231,25E-232,91E-2216:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89191507	rs80175346	8,53E-18	1,95E-15	3,76E-17
16:89193264rs732640052,54E-205,82E-181,27E-1916:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89192339	rs75791347	5,46E-23	1,25E-23	2,91E-22
16:89193265rs1452515020,010510,018416:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89193264	rs73264005	2,54E-20	5,82E-18	1,27E-19
16:89193585rs38156157,39E-581,69E-551,06E-5616:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89193265	rs145251502	0,0105	1	0,0184
16:89201529rs1120834490,00010,02910,000316:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89193585	rs3815615	7,39E-58	1,69E-55	1,06E-56
16:89202361rs1509676584,22E-179,65E-151,82E-1616:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89201529	rs112083449	0,0001	0,0291	0,0003
16:89202444rs80639857,70E-061,76E-032,10E-0516:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89202361	rs150967658	4,22E-17	9,65E-15	1,82E-16
16:89217401rs80565850,00200,46320,003916:89217456rs99255420,00030,05970,0005	16:89202444	rs8063985	7,70E-06	1,76E-03	2,10E-05
16:89217456 rs9925542 0,0003 0,0597 0,0005	16:89217401	rs8056585	0,0020	0,4632	0,0039
	16:89217456	rs9925542	0,0003	0,0597	0,0005

16:89217878	rs3803722	0,0003	0,0597	0,0005
16:89232872	rs62068538	3,61E-20	8,26E-18	1,76E-19
16:89232945	rs72821305	2,10E-18	4,80E-16	9,79E-18
16:89233376	rs62068545	0,0858	0,0197	0,0002
16:89247129	rs9783777	8,59E-25	1,97E-19	4,47E-21
16:89247264	rs28627551	1,56E-11	3,57E-09	5,17E-11
16:89247386	rs9783753	5,77E-07	1,32E-04	1,69E-06
16:89247542	rs185995745	0,0095	1	0,0170
16:89247558	rs1531884	3,88E-05	8,89E-03	9,99E-05
16:89247941	rs3859130	2,85E-05	6,52E-03	7,58E-08
16:89247993	rs147160524	1,18E-19	2,69E-17	5,61E-19
16:89248053	rs370792676	0,0096	1	0,0170
16:89257058	rs117844811	0,0067	1	0,0121
16:89279414	rs4785560	8,68E-53	1,99E-50	9,46E-55
16:89280366	rs117997391	7,87E-28	1,80E-25	4,62E-30
16:89281630	rs113527563	2,73E-33	6,25E-28	1,69E-32
16:89286270	rs2353028	4,62E-73	1,06E-70	1,32E-71
16:89305631	rs3829499	9,55E-26	2,19E-23	5,21E-25
16:89306409	rs866488992	0,0013	0,2876	0,0025
16:89306963	-	0,0002	0,0444	0,0004
16:89307008	rs77560414	1,02E-45	2,34E-43	8,99E-45
16:89317317	rs3114908	0,0020	0,4684	0,0039
16:89341883	rs138402668	3,63E-31	8,31E-26	2,19E-27
16:89341909	-	0,0001	0,0307	0,0003
16:89341966	rs111637076	0,0129	0,002956	0,0296
16:89372259	rs3114863	0,0115	0,002638	0,0266
16:89490068	rs9925045	0,0001	0,0280	0,0003
16:89507758	rs3809641	2,54E-15	5,82E-13	9,10E-15
16:89508168	rs4785684	1,58E-15	3,61E-13	5,73E-15
16:89508277	rs9935289	7.27E-16	1.67E-13	2,73E-15
		.,	,	
16:89537178	rs382745	8,59E-17	1,97E-14	3,64E-16
16:89537178 16:89561263	rs382745 rs174035	8,59E-17 0,0020	1,97E-14 0,4610	3,64E-16 0,0039
16:89537178 16:89561263 16:89574773	rs382745 rs174035 rs366576	8,59E-17 0,0020 0,0147	1,97E-14 0,4610 1	3,64E-16 0,0039 0,0253
16:89537178 16:89561263 16:89574773 16:89574838	rs382745 rs174035 rs366576 rs377119	8,59E-17 0,0020 0,0147 0,0204	1,97E-14 0,4610 1 1	3,64E-16 0,0039 0,0253 0,0349
16:89537178 16:89561263 16:89574773 16:89574838 16:89575596	rs382745 rs174035 rs366576 rs377119 rs555376989	8,59E-17 0,0020 0,0147 0,0204 0,0032	1,97E-14 0,4610 1 1 0,7281	3,64E-16 0,0039 0,0253 0,0349 0,0058
16:89537178 16:89561263 16:89574773 16:89574838 16:89575596 16:89575742	rs382745 rs174035 rs366576 rs377119 rs555376989 rs2946631	8,59E-17 0,0020 0,0147 0,0204 0,0032 0,0001	1,97E-14 0,4610 1 1 0,7281 0,0267	3,64E-16 0,0039 0,0253 0,0349 0,0058 0,0003
16:89537178 16:89561263 16:89574773 16:89574838 16:89575596 16:895755742 16:89816399	rs382745 rs174035 rs366576 rs377119 rs555376989 rs2946631 rs78004870	8,59E-17 0,0020 0,0147 0,0204 0,0032 0,0001 8,31E-73	1,97E-14 0,4610 1 1 0,7281 0,0267 1,90E-70	3,64E-16 0,0039 0,0253 0,0349 0,0058 0,0003 2,11E-71
16:89537178 16:89561263 16:89574773 16:89574838 16:89575596 16:89575742 16:89816399 16:89816418	rs382745 rs174035 rs366576 rs377119 rs555376989 rs2946631 rs78004870 rs72631431	8,59E-17 0,0020 0,0147 0,0204 0,0032 0,0001 8,31E-73 5,75E-71	1,97E-14 0,4610 1 1 0,7281 0,0267 1,90E-70 1,32E-68	3,64E-16 0,0039 0,0253 0,0349 0,0058 0,0003 2,11E-71 1,20E-69
16:89537178 16:89561263 16:89574773 16:89574838 16:89575596 16:89575742 16:89816399 16:89816399	rs382745 rs174035 rs366576 rs377119 rs555376989 rs2946631 rs78004870 rs72631431 rs1800282	8,59E-17 0,0020 0,0147 0,0204 0,0032 0,0001 8,31E-73 5,75E-71 1,17E-05	1,97E-14 0,4610 1 1 0,7281 0,0267 1,90E-70 1,32E-68 2,68E-03	3,64E-16 0,0039 0,0253 0,0349 0,0058 0,0003 2,11E-71 1,20E-69 3,15E-05
16:89537178 16:89561263 16:89574773 16:89574838 16:89575596 16:895755742 16:89816399 16:89816418 16:89816599 16:89816816	rs382745 rs174035 rs366576 rs377119 rs555376989 rs2946631 rs78004870 rs72631431 rs1800282 rs7204250	8,59E-17 0,0020 0,0147 0,0204 0,0032 0,0001 8,31E-73 5,75E-71 1,17E-05 1,57E-78	1,97E-14 0,4610 1 1 0,7281 0,0267 1,90E-70 1,32E-68 2,68E-03 3,60E-76	3,64E-16 0,0039 0,0253 0,0349 0,0058 0,0003 2,11E-71 1,20E-69 3,15E-05 7,20E-77

16:89919532	rs2228479	2,27E-37	5,19E-35	1,79E-36
16:89919709	rs1805007	0,0079	0,001799	0,0184
16:89919746	rs885479	1,01E-84	2,32E-82	2,32E-82
16:90052534	rs11644045	0,0003	0,0767	0,0007
16:90052536	rs11649641	0,0003	0,0767	0,0007
16:90052748	rs570078956	0,0003	0,0672	0,0006
16:90052794	-	8,27E-08	0,0189	0,0002
16:90052934	-	0,0025	0,5616	0,0046
16:90053089	rs370004616	0,0098	1	0,0173
20:34269192	rs6058017	3,87E-08	8,85E-06	1,18E-10
20:34303394	rs819146	1,57E-07	3,61E-05	4,68E-07
20:34676927	rs76185438	3,97E-18	9,09E-16	1,82E-17
20:34704323	rs2378256	9,96E-10	2,28E-07	3,21E-09
20:34709184	rs13037664	0,0009	0,0002103	0,0022
20:34710007	rs2378257	4,52E-06	1,04E-03	1,25E-05

Figura 28. Número de SNPs associados nas comparações entre grupos populacionais africano e europeu (AFR x EUR), africano e leste asiático (AFR x EAS) e europeu e leste asiático (EUR x EAS).

Destaca-se o fato de o SNP rs13037664 ter apresentado associação em todas as três análises, com resultados altamente significativos nas duas comparações envolvendo africanos. Esse polimorfismo não está incluído no sistema HIrisPlex-S, mas apresentou forte desequilíbrio de ligação com o rs2378249 (assim descrito na seção 6.2.1), presente no gene *PIGU*, e apresenta relevância funcional como elemento regulador de acordo com o RegulomeDB e Ensembl (Tabelas 8 e 10). Além disso, este último SNP, rs2378249, apresentou associação apenas na análise entre indivíduos de população africana e europeia, onde obteve valor de *p* muito mais alto do que o rs13037664 (0,01515 *vs.* 3,65 x 10^{-74}). Apesar de ter utilizado o viés de população ao invés de um fenótipo real na presente análise, esse resultado contribui com a hipótese de o SNP em CGI rs13037664 ser o verdadeiro responsável pela real associação. Soma-se a isso o fato de não haver, até o momento, qualquer explicação para a participação direta do gene *PIGU* no processo de melanogênese, mas sim de seu vizinho, o gene *ASIP*, localizado a cerca de 300kb de distância.

Por fim, o SNP rs1805009, que se encontra na ferramenta HIrisPlex e apresentou metilação diferencial entre os melanócitos, não apresentou valor de *p* significativo em nenhuma das análises de associação. Este resultado não é surpreendente, se suas frequências alélicas nestes 3 grupos populacionais (Tabela 9) forem levadas em consideração (frequências inferiores a 1% em cada grupo). Tais frequências sugerem uma rara participação no processo de determinação da pigmentação da pele; porém, sua inclusão na ferramenta HIrisPlex sugere grande relevância quando o alelo alternativo está presente.

7. Conclusão

O presente trabalho teve como objetivo seguir uma abordagem epigenética para encontrar relações entre a metilação do DNA, polimorfismos genéticos, pigmentação da pele humana e diferenciação entre tipos celulares de interesse forense. As análises de metilação contaram com apenas uma amostra (analisada em duplicata) obtida em banco de dados de livre acesso para cada tipo celular de melanócitos claros, intermediários e escuros, queratinócitos, fibroblastos e leucócitos de sangue periférico. Apesar dessa limitação, foi possível obter resultados e conclusões relevantes.

Com relação à metilação e a cor de pele, diversas CpGs presentes nos genes estudados apresentaram diferenças significativas nas análises entre os diferentes tons de melanócitos. As DMPs presentes nos genes MC1R e SLC45A2 possuem maior valor de metilação nos melanócitos escuros nas regiões codificantes, o que apoia a ideia de que a metilação em suas regiões codificantes contribuem positivamente com a expressão dos genes. Por outro lado, os resultados obtidos para os genes ASIP e HERC2/OCA2 contribuem com o conhecimento clássico de que a metilação diminuiria a expressão: o ASIP está hipermetilado nos melanócitos escuros, e, portanto, haveria uma menor expressão desse antagonista, e o HERC2 com maiores valores nos melanócitos claros, o que poderia resultar em menor expressão nos olhos claros e possivelmente na pele clara. Outro achado de extrema relevância foi encontrar a CpG cg04513015 diferencialmente metilada entre as três comparações de melanócitos, visto que sua guanina corresponde ao SNP rs1805009, presente no sistema HIrisPlex-S. Ainda, essa CpG se encontra na região do gene TUBB3, que não possui relação direta com a pigmentação, podendo ser um regulador da expressão do gene MC1R, que se encontra a 2,3 kb. Esse achado indica que padrões de metilação diferencial já estão diretamente representados nas ferramentas preditivas, ainda que de maneira oculta.

As CpGs relatadas podem estar associadas com a expressão desses genes e ter um papel no processo de melanogênese, contribuindo, assim, para a determinação da tonalidade da pigmentação da pele humana. Estudos que se seguirem, somando uma maior quantidade de amostras e que apresentem simultaneamente dados de variantes genéticas, metilação e expressão gênica, podem esclarecer melhor esse papel e auxiliar no tratamento de doenças de pele e na atividade de fenotipagem forense por DNA.

As análises de metilação para diferenciar os tipos celulares também trouxeram resultados promissores, tanto para diferenciar os melanócitos das demais amostras quanto para diferenciar a amostra de sangue das células da pele. Quando feita a média do valor beta de metilação dos três tipos de melanócitos, os genes *MC1R*, *MITF*, *IRF4*, *SLC24A5*, *SLC45A2*, *TYR* e *TYRP1* apresentaram hipometilação em CpGs nos melanócitos e hipermetilação nos demais tipos celulares. A exceção foi o gene *POMC*, onde os melanócitos é que apresentaram valores de metilação mais elevados do que as outras amostras. Nota-se que nesse gene foi encontrada a única região diferencialmente metilada (DMR) do presente trabalho. Essas diferenças podem ajudar a diferenciar os melanócitos das outras células e, principalmente, ajudar a melhor compreender a expressão dos genes nesse tipo celular e sua relação com a produção de melanina e a origem da pigmentação humana.

Além disso, marcadores previamente estabelecidos em outros estudos como sendo capazes de identificar amostras de sangue e pele foram testados nas amostras celulares deste trabalho e se mostraram capazes de diferenciar o sangue das células epiteliais (melanócitos, queratinócitos e fibroblastos), resultado que contribui com a identificação dessas amostras em uma possível cena de crime para auxiliar na elucidação da dinâmica do fato e na identificação de suspeitos.

Em relação aos polimorfismos genéticos, oito SNPs do gene *MC1R* e um do gene *HERC2* presentes no sistema HIrisPlex-S se encontram em ilhas CpGs e, após análises de desequilíbrio de ligação, foi encontrado que outros três SNPs do HIrisPlex-S possuem forte desequilíbrio com polimorfismos presentes em CGIs de suas vizinhanças, e esses podem ser responsáveis pela associação com a pigmentação da pele. Além disso, foram realizadas análises de associação com todos os SNPs presentes em CGIs nas vizinhanças dos genes relacionados à pigmentação, dos quais 203 se mostraram associados na diferenciação entre indivíduos das populações africanas, europeias e leste asiática do projeto 1000 Genomes. Entre eles, o polimorfismo rs13037664, que apresentou forte desequilíbrio de ligação com outro SNP do sistema preditivo HIrisPlex, e que pode apresentar papel ainda mais relevante na predição dos fenótipos.

Deste modo, o trabalho foi concluído com a análise de dados epigenéticos e de polimorfismos disponíveis publicamente e a efetiva identificação de CpGs e SNPs

associados à pigmentação humana. Evidenciando a existência de relações promissoras entre metilação em genes associados a melanogênese, polimorfismos presentes em suas ilhas CpGs e a determinação da pigmentação humana.

Referências

ALALUF, S. et al. The impact of epidermal melanin on objective measurements of human skin colour. **Pigment Cell Research**, v. 15, n. 2, p. 119–126, 2002.

ALLWOOD, J. S.; HARBISON, S. A. SNP model development for the prediction of eye colour in New Zealand. **Forensic Science International: Genetics**, v. 7, n. 4, p. 444–452, 2013.

ANDRADE, E. S. et al. Associations of OCA2-HERC2 SNPs and haplotypes with human pigmentation characteristics in the Brazilian population. **Legal Medicine**, v. 24, p. 78–83, 2017.

ANTUNES, J. P. et al. DNA methylation markers as a powerful technique to discriminate body fluids present in crime scenes. **Conference: International Symposium for Human Identification**, 2013.

AUTON, A. et al. A global reference for human genetic variation. **Nature**, v. 526, n. 7571, p. 68–74, 2015.

BAE-HARBOE, Y. S. C.; PARK, H. Y. Tyrosinase: A central regulatory protein for cutaneous pigmentation. **Journal of Investigative Dermatology**, v. 132, n. 12, p. 2678–2680, 2012.

BARRETT, J. C. et al. Haploview: Analysis and visualization of LD and haplotype maps. **Bioinformatics**, v. 21, n. 2, p. 263–265, 2005.

BASTIAAN HOLWERDA, S. J.; DE LAAT, W. CTCF: The protein, the binding partners, the binding sites and their chromatin loops. **Philosophical Transactions of the Royal Society B: Biological Sciences**, v. 368, n. 1620, 2013.

BAYRAKTAR, G.; KREUTZ, M. R. The role of activity-dependent DNA demethylation in the adult brain and in neurological disorders. **Frontiers in Molecular Neuroscience**, v. 11, n. 169, p. 1–7, 2018.

BENJAMINI, Y.; HOCHBERG, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. **Journal of the Royal Statistical Society**, v. 57, n. 1, p. 289–300, 1995.

BONILLA, C. et al. Investigating DNA methylation as a potential mediator between pigmentation genes, pigmentary traits and skin cancer. **Pigment Cell and Melanoma Research**, v. 34, n. 15, p. 892–904, 2020.

BOYLE, A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. **Genome Research**, v. 22, n. 9, p. 1790–1797, 2012.

BRANICKI, W. et al. Determination of phenotype associated SNPs in the MC1R gene. **Journal of Forensic Sciences**, v. 52, n. 2, p. 349–354, 2007.

BYRSKA-BISHOP, M. et al. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. **Cell**, v. 185, n. 18, p. 3426-3440.e19, 2022.

CAPPETTA, M. et al. Effect of genetic ancestry on leukocyte global DNA methylation in cancer patients. **BMC Cancer**, v. 15, n. 1, p. 1–8, 2015.

CARRATTO, T. M. T. et al. Prediction of eye and hair pigmentation phenotypes using

the HIrisPlex system in a Brazilian admixed population sample. **International Journal of Legal Medicine**, v. 135, n. 4, p. 1329–1339, 2021.

CHAITANYA, L. et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. **Forensic Science International: Genetics**, v. 35, n. March, p. 123–135, 2018.

CHEMALE, G. et al. DNA Evidence in Property Crimes: An Analysis of More than 4200 Samples Processed by the Brazilian Federal PoliceForensic Genetics Laboratory. **Brazilian Journal of Forensic Sciences, Medical Law and Bioethics**, v. 6, n. 1, p. 108–117, 2016.

CHEN, D. P.; LIN, Y. C.; FANN, C. S. J. Methods for identifying differentially methylated regions for sequence- and array-based data. **Briefings in Functional Genomics**, v. 15, n. 6, p. 485–490, 2016.

CICHOREK, M. et al. Skin melanocytes: Biology and development. **Postepy Dermatologii i Alergologii**, v. 30, n. 1, p. 30–41, 2013.

CLOUAIRE, T.; STANCHEVA, I. Methyl-CpG binding proteins: Specialized transcriptional repressors or structural components of chromatin? **Cellular and Molecular Life Sciences**, v. 65, n. 10, p. 1509–1522, 2008.

D'MELLO, S. A. N. et al. Signaling pathways in melanogenesis. **International Journal of Molecular Sciences**, v. 17, n. 7, p. 1–18, 2016.

DEBORTOLI, G. Variantes nos genes OCA2 and HERC2 associadas a fenotipos classicos de pigmentacao e estruturas secundarias presentes na iris em amostra miscigenada da populacao brasileira. Tese de doutorado—Ribeirão Preto: USP, 2018.

DELCUVE, G. P.; RASTEGAR, M.; DAVIE, J. R. Epigenetic control. Journal of Cellular Physiology, v. 219, n. 2, p. 243–250, 2009.

DENTICI, M. L. et al. TUBB3 E410K syndrome: Case report and review of the clinical spectrum of TUBB3 mutations. **American Journal of Medical Genetics, Part A**, v. 182, n. 8, p. 1977–1984, 2020.

DONNELLY, M. P. et al. A global view of the OCA2-HERC2 region and pigmentation. **Human Genetics**, v. 131, n. 5, p. 683–696, 2012.

DOOLEY, C. M. et al. Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. **Pigment Cell and Melanoma Research**, v. 26, n. 2, p. 205–217, 2013.

DU, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. **BMC Bioinformatics**, v. 11, 2010.

DUFFY, D. L. et al. A three-single-nucleotide polymorphism haplotype in intron 1 of OCA2 explains most human eye-color variation. **American Journal of Human Genetics**, v. 80, n. 2, p. 241–252, 2007.

ECKHARDT, F. et al. DNA methylation profiling of human chromosomes 6, 20 and 22. **Nature Genetics**, v. 38, n. 12, p. 1378–1385, 2006.

EIBERG, H. et al. Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting
OCA2 expression. Human Genetics, v. 123, n. 2, p. 177-187, 2008.

FAGNY, M. et al. The epigenomic landscape of African rainforest hunter-gatherers and farmers. **Nature Communications**, v. 6, 2015.

FAN, H.; CHU, J. Y. A Brief Review of Short Tandem Repeat Mutation. **Genomics**, **Proteomics and Bioinformatics**, v. 5, n. 1, p. 7–14, 2007.

FRASER, H. B. et al. Population-specificity of human DNA methylation. **Genome Biology**, v. 13, n. 2, 2012.

FRUMKIN, D. et al. DNA methylation-based forensic tissue identification. **Forensic Science International: Genetics**, v. 5, n. 5, p. 517–524, 2011.

GABRIEL, S. B. et al. The structure of haplotype blocks in the human genome. **Science**, v. 296, n. 5576, p. 2225–2229, 2002.

GARDINER-GARDEN, M.; FROMMER, M. CpG islands in vertebrate genomes. **Journal of Molecular Biology**, v. 196, p. 261–282, 1987.

GUDBJARTSSON, D. F. et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. **Nature Genetics**, v. 40, n. 7, p. 886–891, 2008.

HARBISON, S.; FLEMING, R. Forensic body fluid identification: state of the art. **Research and Reports in Forensic Medical Science**, n. 2016, p. 11, 2016.

HART, K. L. et al. Improved eye- and skin-color prediction based on 8 SNPs. **Croatian Medical Journal**, v. 54, n. 3, p. 248–256, 2013.

HE, Y. et al. Hereditary Basis of Coat Color and Excellent Feed Conversion Rate of Red Angus Cattle by Next-Generation Sequencing Data. **Animals**, v. 12, n. 12, p. 1–9, 2022.

HEYN, H. et al. DNA methylation contributes to natural human variation. **Genome Research**, v. 23, n. 9, p. 1363–1372, 2013.

HOLM, K. et al. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells. **Breast Cancer Research**, v. 18, n. 1, p. 1–20, 2016.

HOLZSCHECK, N. et al. Concomitant DNA methylation and transcriptome signatures define epidermal responses to acute solar UV radiation. **Scientific Reports**, v. 10, n. 1, p. 1–14, 2020.

IGARASHI, J. et al. Quantitative analysis of human tissue-specific differences in methylation. **Biochemical and Biophysical Research Communications**, v. 376, n. 4, p. 658–664, 2008.

ITO, S. A chemist's view of melanogenesis. **Pigment Cell Research**, v. 16, n. 3, p. 230–236, 2003.

JAFFE, A. E. et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. **International Journal of Epidemiology**, v. 41, n. 1, p. 200–209, 2012.

KADER, F.; GHAI, M. DNA methylation-based variation between human populations.

Molecular Genetics and Genomics, v. 292, n. 1, p. 5–35, 2017.

KANESTSKY, P. et al. A Polymorphism in the agouti signaling protein gene is asociated with human pigmentation. **The American Society of Human Genetics**, v. 70, p. 770–775, 2002.

KAYSER, M. Forensic DNA Phenotyping: Predicting human appearance from crime scene material for investigative purposes. **Forensic Science International: Genetics**, v. 18, p. 33–48, 2015.

KENNY, E. E. et al. Melanesians blond hair is caused by an amino acid change in TYRP1. **Science**, v. 336, p. 1–8, 2012.

KENT, W. J. et al. The Human Genome Browser at UCSC. **Genome Research**, v. 12, n. 6, p. 996–1006, 2002.

KIM, Y. et al. Genome-wide association study of actinic keratosis identifies new susceptibility loci implicated in pigmentation and immune regulation pathways. **Communications Biology**, v. 5, n. 1, 2022.

LANDI, M. T. et al. MC1R, ASIP, and DNA repair in sporadic and familial melanoma in a mediterranean population. **Journal of the National Cancer Institute**, v. 97, n. 13, p. 998–1007, 2005.

LAUSS, M. et al. Genome-Wide DNA Methylation Analysis in Melanoma Reveals the Importance of CpG Methylation in MITF Regulation. **Journal of Investigative Dermatology**, v. 135, n. 7, p. 1820–1828, 2015.

LEE, H. Y. et al. DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood. **Forensic Science International: Genetics**, v. 24, p. 75–82, 2016.

LI, H. Tabix: Fast retrieval of sequence features from generic TAB-delimited files. **Bioinformatics**, v. 27, n. 5, p. 718–719, 2011.

LIANG, Z. et al. RALY regulate the proliferation and expression of immune/inflammatory response genes via alternative splicing of FOS. **Genes and Immunity**, v. 23, n. 8, p. 246–254, 2022.

LIM, J. H. et al. A de novo microdeletion of ANKRD11 gene in a Korean patient with KBG Syndrome. **Annals of Laboratory Medicine**, v. 34, n. 5, p. 390–394, 2014.

LIU, F.; WEN, B.; KAYSER, M. Colorful DNA polymorphisms in humans. **Seminars in Cell and Developmental Biology**, v. 24, n. 6–7, p. 562–575, 2013.

LIU, J. J.; FISHER, D. E. Lighting a path to pigmentation: Mechanisms of MITF induction by UV. **Pigment Cell and Melanoma Research**, v. 23, n. 6, p. 741–745, 2010.

LUO, Y. et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. **Nucleic Acids Research**, v. 48, n. D1, p. D882–D889, 2020.

MACHIELA, M. J.; CHANOCK, S. J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. **Bioinformatics**, v. 31, n. 21, p. 3555–3557, 2015.

MADI, T. et al. The determination of tissue-specific DNA methylation patterns in

forensic biofluids using bisulfite modification and pyrosequencing. **Electrophoresis**, v. 33, n. 12, p. 1736–1745, 2012.

MAKSIMOVIC, J.; GORDON, L.; OSHLACK, A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. **Genome Biology**, v. 13, n. 6, p. 1–12, 2012.

MAROÑAS, O. et al. Development of a forensic skin colour predictive test. **Forensic Science International: Genetics**, v. 13, p. 34–44, 2014.

MCDONALD, A. et al. Y-STR analysis of digital and/or penile penetration cases with no detected spermatozoa. **Forensic Science International: Genetics**, v. 15, p. 84–89, 2015.

MEZIANI, R. et al. Association study of the g.8818A > G polymorphism of the human agouti gene with melanoma risk and pigmentary characteristics in a French population. **Journal of Dermatological Science**, v. 40, n. 2, p. 133–136, 2005.

MILLINGTON, G. W. M. Proopiomelanocortin (POMC): The cutaneous roles of its melanocortin products and receptors. **Clinical and Experimental Dermatology**, v. 31, n. 3, p. 407–412, 2006.

MOEN, E. L. et al. Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. **Genetics**, v. 194, n. 4, p. 987–996, 2013.

MOORE, L. D.; LE, T.; FAN, G. DNA Methylation and Its Basic Function. **Neuropsychopharmacology**, p. 23–38, 2013.

MORRIS, T. J. et al. ChAMP: 450k Chip Analysis Methylation Pipeline. **Bioinformatics**, v. 30, n. 3, p. 428–430, 2014.

OYARCE-PEZOA, S. et al. The autophagy protein Def8 is altered in Alzheimer's disease and A β 42-expressing Drosophila brains. **Scientific Reports**, v. 13, n. 1, p. 17137, 2023.

PARRA, E. J. Human pigmentation variation: Evolution, genetic basis, and implications for public health. **Yearkbook of physical anthropology**, v. 50, p. 85–105, 2007.

PICARDO, M.; CARDINALI, G. The genetic determination of skin pigmentation: KITLG and the KITLG/c-kit pathway as key players in the onset of human familial pigmentary diseases. **Journal of Investigative Dermatology**, v. 131, n. 6, p. 1182–1185, 2011.

PRAETORIUS, C. et al. A polymorphism in IRF4 affects human pigmentation through a tyrosinase-dependent MITF/TFAP2A pathway. **Cell**, v. 155, n. 5, p. 1–24, 2014.

PURCELL, S. et al. PLINK: A tool set for whole-genome association and populationbased linkage analyses. **American Journal of Human Genetics**, v. 81, n. 3, p. 559– 575, 2007.

QUILLEN, E. E.; SHRIVER, M. D. SLC24A5: Exchanging genetic and biochemical knowledge. **Pigment Cell and Melanoma Research**, v. 21, n. 3, p. 344–345, 2008.

RAKYAN, V. K. et al. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). **Genome Research**, v. 18, n. 9, p. 1518–1529, 2008.

ROCHA, J. The Evolutionary History of Human Skin Pigmentation. **Journal of Molecular Evolution**, v. 88, n. 1, p. 77–87, 2020.

RUIZ, Y. et al. Further development of forensic eye color predictive tests. **Forensic Science International: Genetics**, v. 7, n. 1, p. 28–40, 2013.

SALZANO, F. M.; SANS, M. Interethnic admixture and the evolution of Latin American populations. **Genetics and Molecular Biology**, v. 37, n. 1, p. 151–170, 2014.

SANTOS, N. P. C. et al. Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. **Human Mutation**, v. 31, n. 2, p. 184–190, 2010.

SHERRY, S. T. et al. DbSNP: The NCBI database of genetic variation. **Nucleic Acids Research**, v. 29, n. 1, p. 308–311, 2001.

SIJEN, T. Molecular approaches for forensic cell type identification: On mRNA, miRNA, DNA methylation and microbial markers. **Forensic Science International: Genetics**, v. 18, p. 21–32, 2015.

SIMMONS, B. D. et al. GENES AND DISEASE | Lead Editor: Alexandre Vieira Epigenetic Influences and Disease What Is Epigenetics? How Do Epigenetic Changes Affect Genes? Epigenetics and Disease: Some Examples. **Annual Review of Genomics and Human Genetics**, v. 1, n. Table 1, p. 1–6, 2008.

SLOMINSKI, A. et al. Melanin pigmentation in mammalian skin and its hormonal regulation. **Physiological Reviews**, v. 84, n. 4, p. 1155–1228, 2004.

SÖCHTIG, J. et al. Exploration of SNP variants affecting hair colour prediction in Europeans. International Journal of Legal Medicine, v. 129, n. 5, p. 963–975, 2015.

STURM, R. A.; TEASDALE, R. D.; BOX, N. F. Human pigmentation genes: Identification, structure and consequences of polymorphic variation. **Gene**, v. 277, n. 1–2, p. 49–62, 2001.

SUZUKI, I. et al. Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to α -melanotropin. **Journal of Investigative Dermatology**, v. 108, n. 6, p. 838–842, 1997.

TULLY, G. Genotype versus phenotype: Human pigmentation. **Forensic Science International: Genetics**, v. 1, n. 2, p. 105–110, 2007.

VACHTENHEIM, J.; BOROVANSKÝ, J. "Transcription physiology" of pigment formation in melanocytes: Central role of MITF. **Experimental Dermatology**, v. 19, n. 7, p. 617–627, 2010.

VALVERDE, P. et al. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. v. 11, n. november, p. 328–330, 1995.

VISSER, M. et al. Genetic variation in regulatory DNA elements: The case of OCA2 transcriptional regulation. **Pigment Cell and Melanoma Research**, v. 27, n. 2, p. 169–177, 2014.

VOISEY, J. et al. A polymorphism in the agouti signalling protein (ASIP) is associated with decreased levels of mRNA. **Pigment Cell Research**, v. 19, n. 3, p. 226–231, 2006.

WADDINGTON, C. H. The epigenotype. International Journal of Epidemiology, v. 41, n. 1, p. 10–13, 1942.

WALSH, S. et al. Developmental validation of the IrisPlex system: Determination of blue and brown iris colour for forensic intelligence. **Forensic Science International: Genetics**, v. 5, n. 5, p. 464–471, 2011a.

WALSH, S. et al. IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. **Forensic Science International: Genetics**, v. 5, n. 3, p. 170–180, 2011b.

WALSH, S. et al. The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. **Forensic Science International: Genetics**, v. 7, n. 1, p. 98–115, 2013.

WALSH, S. et al. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. **Forensic Science International: Genetics**, v. 9, n. 1, p. 150–161, 2014.

WALSH, S. et al. Global skin colour prediction from DNA. **Human Genetics**, v. 136, n. 7, p. 847–863, 2017.

WANG, Q. et al. Gene body methylation in cancer: molecular mechanisms and clinical applications. **Clinical Epigenetics**, v. 14, n. 1, p. 1–14, 2022.

WEI, X. et al. PIGU promotes hepatocellular carcinoma progression through activating NF-κB pathway and increasing immune escape. **Life Sciences**, v. 260, n. September, p. 118476, 2020.

WILDE, S. et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. **Proceedings of the National Academy of Sciences of the United States of America**, v. 111, n. 13, p. 4832–4837, 2014.

YANG, X. et al. Gene body methylation can alter gene expression and is a therapeutic target in cancer. **Cancer Cell**, v. 26, n. 4, p. 577–590, 2014.

YUASA, I. et al. Distribution of the F374 allele of the SLC45A2 (MATP) gene and founder-haplotype analysis. **Annals of Human Genetics**, v. 70, n. 6, p. 802–811, 2006.

ZERBINO, D. R. et al. The Ensembl Regulatory Build. **Genome Biology**, v. 16, n. 1, p. 1–8, 2015.

ZHOU, S. et al. Epigenetic regulation of melanogenesis. **Ageing Research Reviews**, v. 69, n. April, 2021.

ZILLER, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. **Nature**, v. 500, n. 7463, p. 477–481, 2013.

Apêndice

Apêndice A – Protocolo de análise de dados de metilação utilizando o pacote ChAMP no ambiente R

1. Obtenção dos dados

Os dados foram obtidos da plataforma *Gene Expression Omnibus DataSets* (https://www.ncbi.nlm.nih.gov/gds/?term=), que armazena conjuntos de dados de expressão genética selecionados. Para fazer a busca por um conjunto de dados em específico basta inserir os termos de pesquisa para localizar experimentos de interesse. Além disso, os registros de conjuntos de dados contêm recursos adicionais, incluindo ferramentas de clusterização e informações de expressão diferencial.

O conjunto de dados utilizados no trabalho foi o GSE74877 (HOLM et al., 2016), que contém dados de metilação de DNA em escala genômica de amostras de diferentes tipos celulares humanos, obtidos utilizando o *Illumina Human Methylation 450K BeadChip*. No total foram realizados 24 experimentos. Entre eles, duplicatas em amostras de fibroblastos dérmicos, melanócitos claros, melanócitos intermediários, melanócitos escuros, queratinócitos epidérmicos, fibroblastos mamários, células epiteliais mamárias, células endoteliais mamárias, células-tronco mesenquimais e DNA não metilado. Ainda, o conjunto contém duas amostras diferentes de células de tecido mamário normal, uma amostra de leucócitos do sangue periférico e uma amostra metilada enzimaticamente.

Para o presente trabalho foram utilizadas apenas as amostras de fibroblastos, queratinócitos, melanócitos e leucócitos de sangue periférico, assim descritas na página do banco de dados:

GSM1936932	-	Human	dermal fibroblast-adult genomic DNA [HDF-a_1]
GSM1936935	-	Human	epidermal melanocyte-dark genomic DNA [HEM-d_1]
GSM1936936	-	Human	epidermal melanocyte-medium genomic DNA [HEM-m_1]
GSM1936938	-	Human	epidermal melanocyte-light genomic DNA [HEM-1_1]
GSM1936939	-	Human	epidermal keratinocyte-adult genomic DNA [HEK-a_1]
GSM1936943	-	Human	Genomic DNA Male [Blood]
GSM1936944	-	Human	dermal fibroblast-adult genomic DNA [HDF-a_2]
GSM1936947	-	Human	epidermal melanocyte-dark genomic DNA [HEM-d_2]
GSM1936948	-	Human	epidermal melanocyte-medium genomic DNA [HEM-m 2]
GSM1936950	_	Human	epidermal melanocyte-light genomic DNA [HEM-1_2]
GSM1936951	-	Human	epidermal keratinocyte-adult genomic DNA [HEK-a_2]

Foi feito o download dos dados em formato .idat, que são os arquivos brutos obtidos pelo ensaio 450k da Ilumina. Para cada amostra constam dois arquivos .idat, provenientes das hibridizações das sondas do ensaio. Como por exemplo, para a amostra de sangue:

GSM1936943_7310440136_R06C02_Grn Sangue.idat GSM1936943_7310440136_R06C02_Red Sangue.idat

Além disso, juntamente com os dados .idat, foi obtido um arquivo do manisfesto do ensaio da Illumina. Esse arquivo descreve os marcadores de metilação que estão sendo analisados, fornecendo informações como a posição genômica de cada CpG, genes, tipo de sonda, posição da ilha CpG, entre outros.

Para as análises feitas em seguida, foi organizado um arquivo Pheno.csv (separado por virgulas) para organizar cada amostra de metilação e seus respectivos grupos. Abaixo se encontra a estrutura do arquivo Pheno utilizado para analisar as amostras de melanócitos claros e escuros:

```
[Header],,,,,,
Investigator Name,,,,,,
Project Name,,,,,,
Experiment Name,,,,,,
Date,3/18/2012,,,,,
[Data],,,,,,
Sample_Name,Sample_Plate,Sample_Group,Pool_ID,Project,Sample_Well,Se
ntrix_ID,Sentrix_Position
Escuro1,,Escuros,,,,7310440136,R04C01
Escuro2,,Escuros,,,,7310440138,R04C01
Claro1,,Claros,,,,7310440138,R01C02
Claro2,,Claros,,,,7310440138,R01C02
```

Onde "Escuro1, Escuro2, Claro1 e Claro2" se referem às amostras utilizadas. São duas de cada devido aos dados .idat serem em duplicatas. Em seguida, temos os nomes dos grupos, aqui designados como "Escuros" e "Claros". Sentrix_ID e Sentrix_Position vêm dos próprios nomes dos arquivos .idat, como mostrado anteriormente na amostra de sangue.

Dessa forma, para cada análise foi feito um arquivo Pheno diferente onde foram organizados diferentes grupos e suas respectivas amostras.

2. Análise dos dados utilizando o ChAMP

Para a análise foi utilizado o *The Chip Analysis Methylation Pipeline* (ChAMP), em R (MORRIS et al., 2014). Esse pacote foi projetado para a análise de dados de *beadarray* de metilação da Illumina (EPIC e 450k) e fornece um pipeline que integra vários métodos de análise de 450k e EPIC (850K) atualmente disponíveis. Isto inclui uma variedade de diferentes métodos de importação de dados (por exemplo, de arquivos .idat ou de uma matriz com valor beta) e de gráficos de controle de qualidade.

Todo o processamento dos dados foi feito usando o RStudio (versão 4.1.2.). Para instalar o ChAMP, segundo as instruções, foi utilizado o comando abaixo:

```
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("ChAMP")
```

Após a instalação, foi aberto do ChAMP no RStudio utilizando o comando library("ChAMP"). O primeiro passo é carregar os dados no programa. Para isso, os arquivos .idat e Pheno.csv devem estar organizados em um mesmo diretório (Figura A1).

Figura A1. Exemplo de diretório contendo os arquivos .idat e Pheno.csv para as amostras de melanócitos claros e escuros.

Para carregar os dados, utiliza-se o comando:

```
myLoad <- champ.load(testDir)</pre>
```

onde "testDir" é o caminho para o diretório onde se encontram os arquivos .idat e o arquivo Pheno.csv das amostras. No exemplo, o comando utilizado foi myLoad <- champ.load ("C:/EvsC"). Após utilizar o comando, a variável "myLoad" se torna uma lista contendo a matriz de valores beta para cada sonda CpG em cada amostra (Figura A2).

R	EvsC - RS	Studio									
<u>F</u> ile	<u>E</u> dit	<u>C</u> od	e <u>V</u> iew	<u>P</u> lots	Session	<u>B</u> uild	<u>D</u> ebug	<u>P</u> rofile	<u>T</u> ools	<u>H</u> elp	
0	- 0	1	- 🔒 🛛	7 📥	🔺 Go t	o file/fund	tion	- 68	Addins	•	
S	ource										
C	onsole	Term	ninal ×	Backgrou	und Jobs >						
0	R R 4.1	1.2 • 0	C:/EvsC/ Ø	\$							
	my (Log	a'r r '	hota"	11							
1	IIIyLUa		i jeca	IJ Escuro1	E	scuroz	2	clard	01	claro	2
c	g00000	957	0.806	8175468	0.8219	955371	0.829	9013931	0.8	26311570	3
c	_ g00001	349	0.752	5878318	0.6906	331763	0.599	9055955	53 0.5	742189472	2
c	_ g00001	583	0.0192	2045067	0.0255	610973	3 0.029	9021751	.8 0.0	107628399	9
с	g00002	028	0.031	3165477	0.0402	592189	0.044	4715447	2 0.0	44652660	9
с	g00002	719	0.020	8197788	0.0193	485342	2 0.02	5672222	9 0.0	36072405	3
c		837	0.4662	7585784	0.4531	250000	0.434	4255834	7 0.4	49150326	8
с	 q00003	202	0.0163	2186858	0.0139	825396	5 0.014	4427208	32 0.0	135003020	5
с	_ q00003	287	0.314:	1958114	0.3181	698243	3 0.371	1967316	52 0.3	488357134	1
с	_ q00007	036	0.973	8786509	0.9544	660148	3 0.941	8885172	28 0.9	627898162	2
с	g00007	898	0.019	3994602	0.0277	233268	3 0.029	9414243	6 0.0	27146723	5
с	q00008	3004	0.0762	2086211	0.0742	744712	2 0.08	5241110	0.0	861254779	9
с	q00008	647	0.0539	9963787	0.0549	373241	0.05	0206279	3 0.0	440680399	9
c	_ q00009	292	0.078	3635253	0.0807	640945	5 0.107	7671494	5 0.0	82074908	3
С	_ g00011	.717	0.9448	8995363	0.9356	014581	0.943	1121536	59 0.9	332714118	В
c	_ g00014	168	0.7270	0617089	0.6554	221047	0.852	2488340	9 0.7	785997514	1
-	200015	0.20	0 027/	0061262	0 0201	200120	0 07	2602404	6 0 0		7

Figura A2. Matriz beta obtida na análise entre melanócitos claros e escuros utilizando o pacote ChAMP em R.

Em seguida, é possível usar o comando:

CpG.GUI()

para visualizar informações sobre quantas CpGs estão contidas em cada cromossomo, quantas CpGs se encontram em CGIs, *shore*, *shelf* ou *opensea*, e quantas se encontram em regiões de éxon, sítios de transcrição, corpo gênico ou regiões não transcritas. O próprio ChAMP fornece gráficos de colunas para melhor visualização dessas informações. Para seguir com as análises, deve-se fazer o controle de qualidade pelo comando:

champ.QC()

para garantir que o conjunto de dados esteja adequado para análise posterior. A função desenha gráficos para o usuário verificar facilmente a qualidade de seus dados. Entre eles, um gráfico de densidade de valores beta para cada grupo e um dendrograma que realiza um agrupamento das amostras.

O próximo passo é realizar a normalização dos diferentes designs de hibridização das sondas, utilizando o comando:

```
myNorm < - champ.norm()</pre>
```

Nos beadarrays Illumina, as sondas vêm em dois designs diferentes (chamados tipo I e tipo II), com diferentes químicas de hibridização, o que significa que as sondas desses dois designs diferentes exibirão distribuições diferentes (MAKSIMOVIC; GORDON; OSHLACK, 2012). Este é um efeito técnico e é independente de variações causadas por diferenças nas características biológicas (por exemplo, densidade de CpG) das sondas tipo I e tipo II. A diferença mais marcante entre as distribuições de metilação tipo I e tipo II é que a distribuição tipo II exibe uma faixa dinâmica reduzida. Infinium I usa fluorescência de duas sondas diferentes, não metilada (convertida) e metilada (não convertida), para avaliar o nível de metilação de um CpG alvo. A ligação em qualquer uma das sondas é seguida por uma extensão de base única que resulta na adição de um nucleotídeo marcado com fluorescência. Por outro lado, o design do Infinium II utiliza apenas uma única sonda por CpG alvo, que incorpora uma base R "degenerada" em quaisquer locais CpG subjacentes no corpo da sonda. O estado de metilação é detectado por extensão de base única na posição do 'C' do CpG alvo, o que sempre resulta na adição de um nucleotídeo marcado. No entanto, a cinética e a especificidade da hibridização são frequentemente comprometidas em regiões de maior densidade de CpGs e, portanto, as sondas Infinium I ainda são utilizadas para expandir o número de locais CpG que podem ser analisados. São observadas diferenças técnicas entre os tipos de sonda Infinium I e Infinium II, como diferenças nas distribuições dos valores beta que produzem. Portanto é fundamental a realização de um ajuste de normalização entre esses dois tipos.

Em seguida, já é possível buscar por sondas diferencialmente metiladas (DMPs) e regiões diferencialmente metiladas (DMRs).

Para o primeiro caso, a função a ser utilizada é:

```
myDMP <- champ.DMP()</pre>
```

Essa função retorna todas as CpGs diferencialmente metiladas encontradas entre as amostras, com seus respectivos valores de *p*, valores de *p* ajustados, valores beta das amostras, posições no genoma, entre outras informações. Pela função:

DMP.GUI()

é possível visualizar graficamente as DMPs encontradas em cada gene (exemplo na Figura A3), ou a distribuição dos valores beta de qualquer CpG especifica em cada amostra. Os gráficos plotados pelo ChAMP também incluem informações sobre a posição das DMPs em relação a ilhas CpGs e regiões do gene (por exemplo, se está em éxon, sítio de início de transcrição, corpo gênico, entre outros).

Figura A3. Visualização das DMPs encontradas no gene *MC1R* na análise entre melanócitos claros e escuros utilizando o comando DMP.GUI() no ChAMP.

Da mesma forma, para encontrar e visualizar as DMRs se utiliza os comandos: myDMR <- champ.DMR() DMR.GUI()

O primeiro comando retorna as regiões diferencialmente metiladas encontradas entre as diferentes amostras. Pelo segundo é possível visualizar as posições de inicio e fim de cada uma, quantas CpGs possuem, valores betas médios e valores de *p* ajustados. Também é possível a visualização gráfica das DMR em genes selecionados.

É possível usar três algoritmos para encontrar as DMRs: *Bumphunter*, *ProbeLasso* e *DMRcate*. O algoritmo *Bumphunter* é o utilizado por padrão no ChAMP. Ele primeiro agrupa todas as sondas em pequenos clusters (ou regiões) e, em seguida, aplica o método de permutação aleatória para estimar as DMRs candidatas. O resultado do algoritmo *bumphunter* é um *dataframe* contendo todas as DMRs detectadas, com seu comprimento, clusters e número de CpGs anotados.

Dessa forma foram realizadas as análises do presente trabalho. O processo de carregamento, controle de qualidade, normalização e obtenção de DMPs e DMRs foi repetido para cada comparação de amostras, sendo: melanócitos claros *vs.* escuros, claros *vs.* intermediários, escuros *vs.* intermediários, melanócitos *vs.* fibroblastos, melanócitos *vs.* queratinócitos, melanócitos *vs.* leucócitos, e leucócitos *vs.* pele (melanócitos, queratinócitos e fibroblastos unidos em um grupo).

3. Referências bibliográficas

HOLM, K. et al. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells. **Breast Cancer Research**, v. 18, n. 1, p. 1–20, 2016.

MAKSIMOVIC, J.; GORDON, L.; OSHLACK, A. SWAN: Subset-quantile within array normalization for illumina infinium HumanMethylation450 BeadChips. **Genome Biology**, v. 13, n. 6, p. 1–12, 2012.

MORRIS, T. J. et al. ChAMP: 450k Chip Analysis Methylation Pipeline. **Bioinformatics**, v. 30, n. 3, p. 428–430, 2014.

Apêndice B – Resultados obtidos nas análises entre diferentes tons de melanócitos e entre diferentes tipos celulares

O ensaio 450k da Illumina contém 485.512 sondas CpGs para análise. Após a filtragem dos dados utilizando o software ChAMP, foram removidas as sondas que apresentam baixa qualidade. Em média, 76.537 sondas foram removidas. O número exato da quantidade de CpGs analisadas em casa comparação foi de 409.947 entre melanócitos escuros e claros; 410.526 entre escuros e intermediários; 409.956 entre claros e intermediários; 407.664 entre melanócitos e queratinócitos; 407.293 entre melanócitos e fibroblastos; e 408.466 entre melanócitos e leucócitos.

DMD	0.000	Deniãet		Valor beta	l	Valo	r de <i>p</i> ajus	stado
DMP	Gene	Reglao	Е	I	С	ExC	ΕxΙ	C x I
cg21583440	ANKRD11	Corpo	0,90	-	0,83	0,0061	-	-
cg03891962	ANKRD11	Corpo	0,90	0,84	-	-	0,0085	-
cg12859046	ANKRD11	Corpo	0,91	-	0,85	0,0446	-	-
cg06098690	ANKRD11	Corpo	0,85	0,90	0,85	-	0,0261	0,0310
cg01149053	ANKRD11	Corpo	0,76	0,83	-	-	0,0069	-
cg06347582	ANKRD11	Corpo	0,87	-	0,83	0,0232	-	-
cg27535677	ANKRD11	Corpo	0,86	-	0,80	0,0121	-	-
cg16535144	ANKRD11	Corpo	0,94	-	0,90	0,0227	-	-
cg13670288	ANKRD11	Corpo	0,92	-	0,87	0,0184	-	-
cg09220891	ANKRD11	Corpo	0,50	0,65	0,53	-	0,0005	0,0045
cg04255207	ANKRD11	Corpo	0,82	-	0,74	0,0156	-	-
cg02487202	ANKRD11	Corpo	0,82	0,77	-	-	0,0353	-
cg11340537	ANKRD11	Corpo	0,90	-	0,85	0,0465	-	-
cg09607566	ANKRD11	Corpo	0,90	0,83	-	-	0,0022	-
cg26783123	ANKRD11	Corpo	0,39	0,28	-	-	0,0052	-
cg24728898	ANKRD11	Corpo	0,10	-	0,15	0,0418	-	-
cg04503319	ANKRD11	Corpo	0,10	0,15	-	-	0,0168	-
cg00005072	ANKRD11	Corpo	0,87	0,91	-	-	0,0212	-
cg05356511	ANKRD11	Corpo	0,90	0,85	-	-	0,0400	-
cg25889035	ANKRD11	Corpo	0,06	-	0,35	0,0006	-	-
cg08527124	ANKRD11	Corpo	-	0,06	0,34	-	-	0,0015
cg10617091	ANKRD11	5'UTR	0,74	-	0,81	0,0101	-	-
cg02415470	ANKRD11	5'UTR	-	0,69	0,81	-	-	0,0190
cg26546229	ANKRD11	5'UTR	0,92	0,95	-	-	0,0487	-
cg03559942	ANKRD11	5'UTR	0,04	-	0,12	0,0019	-	-
cg07708487	ANKRD11	5'UTR	0,04	0,11	-	-	0,0059	-
cg01753788	ANKRD11	5'UTR	0,71	-	0,66	0,0357	-	-
cg08311935	ANKRD11	5'UTR	0,80	0,76	-	-	0,0345	-
cg23408253	ANKRD11	5'UTR	0,85	-	0,81	0,0312	-	-
cg27150870	ANKRD11	5'UTR	0,85	0,80	-	-	0,0095	-
cg07929642	ANKRD11	5'UTR	0,92	0,83	-	-	0,0060	-
cg27221477	ANKRD11	5'UTR	0,89	-	0,83	0,0381	-	-
cg24453604	ANKRD11	5'UTR	0,33	-	0,42	0,0262	-	-
cg05504729	ANKRD11	5'UTR	0,32	0,37	-	-	0,0242	-
cg20391793	ANKRD11	5'UTR	0,41	-	0,54	0,0028	-	-

Tabela B1 – Total de DMPs encontradas nas análises entre melanócitos escuros e claros (E x C), escuros e intermediários (E x I) e claros e intermediários (C x I).

cg05944840	ANKRD11	5'UTR	0,40	0,50	-	-	0,0039	-
cg09155774	ANKRD11	5'UTR	0,76	-	0,85	0,0029	-	-
cg07054502	ANKRD11	5'UTR	-	0,78	0,85	-	-	0,0093
cg10073794	ANKRD11	5'UTR	0,71	-	0,65	0,0155	-	-
cg04394707	ANKRD11	5'UTR	0,68	-	0,75	0,0071	-	-
cg27468976	ANKRD11	5'UTR	0,68	0,75	-	-	0,0103	-
cg26481727	ANKRD11	5'UTR	0,49	0,57	0,48	-	0,0039	0,0268
cg22224625	ANKRD11	5'UTR	0,70	-	0,56	0,0015	-	-
cg05507697	ANKRD11	5'UTR	0,70	0,58	-	-	0,0016	-
cg26913058	ANKRD11	5'UTR	0,43	-	0,34	0,0028	-	-
cg06411447	ANKRD11	5'UTR	0,42	0,37	-	-	0,0221	-
cg12931707	ANKRD11	5'UTR	0,67	-	0,49	0,0008	-	-
cg01619533	ANKRD11	5'UTR	0,66	0,56	-	-	0,0442	-
cg19418458	ANKRD11	5'UTR	0,91	-	0,78	0,0009	-	-
cg02749356	ANKRD11	5'UTR	0,92	0,78	-	-	0,0008	-
cg08420923	ANKRD11	5'UTR	-	0,44	0,53	-	-	0,0055
cg03440386	ANKRD11	5'UTR	0,91	-	0,83	0,0275	-	-
cg06783428	ANKRD11	5'UTR	0,90	0,83	0,89	-	0,0295	0,0422
cg08889114	ANKRD11	5'UTR	0,40	-	0,54	0,0006	-	-
cg08417142	ANKRD11	5'UTR	0,39	0,59	-	-	0,0011	-
cg14185918	ANKRD11	5'UTR	0,04	-	0,10	0,0053	-	-
cg08549241	ANKRD11	5'UTR	0,04	0,15	0,10	-	0,0011	0,0234
cg05638739	ANKRD11	5'UTR	0,32	0,45	-	-	0,0103	-
cg14413050	ANKRD11	5'UTR	0,72	-	0,59	0,0036	-	-
cg16525838	ANKRD11	5'UTR	0,71	0,61	-	-	0,0086	-
cg06567829	ANKRD11	5'UTR	0,08	0,27	-	-	0,0044	-
cg00770754	ANKRD11	5'UTR	0,12	0,30	0,12	-	0,0003	0,0015
cg03163759	ANKRD11	5'UTR	0,08	0,31	0,13	-	0,0003	0,0028
cg00910827	ANKRD11	5'UTR	0,08	-	0,13	0,0098	-	-
cg08057432	ANKRD11	5'UTR	0,29	0,46	0,39	-	0,0004	0,0214
cg06370855	ANKRD11	5'UTR	0,30	-	0,40	0,0036	-	-
cg26946905	ANKRD11	5'UTR	0,08	0,35	0,12	-	0,0004	0,0070
cg02582213	ANKRD11	5'UTR	0,04	0,22	0,08	-	0,0003	0,0037
cg13911772	ANKRD11	5'UTR	0,08	-	0,03	0,0063	-	-
cg02226192	ANKRD11	5'UTR	0,08	0,03	-	-	0,0089	-
cg12504882	ANKRD11	5'UTR	0,41	-	0,11	0,0002	-	-
cg27660627	ANKRD11	5'UTR	0,40	0,11	-	-	0,0002	-
cg06365976	ANKRD11	5'UTR	0,94	0,90	-	-	0,0162	-
cg00206490	ANKRD11	5'UTR	0,86	0,75	-	-	0,0140	-
cg05493336	ANKRD11	5'UTR	0,69	0,60	-	-	0,0035	-

cg04528829	ANKRD11	5'UTR	0,50	-	0,55	0,0276	-	-
cg09971549	ANKRD11	5'UTR	0,53	0,63	0,73	-	0,0020	0,0116
cg13450266	ANKRD11	5'UTR	0,53	-	0,73	0,0010	-	-
cg25929731	ANKRD11	5'UTR	0,77	-	0,92	0,0019	-	-
cg00169122	ANKRD11	5'UTR	0,77	0,90	-	-	0,0068	-
cg01320130	ANKRD11	5'UTR	0,90	-	0,84	0,0146	-	-
cg16437021	ANKRD11	5'UTR	0,86	0,74	-	-	0,0025	-
cg05758804	ANKRD11	5'UTR	0,45	-	0,67	0,0006	-	-
cg05320533	ANKRD11	5'UTR	0,45	0,61	-	-	0,0003	-
cg05288253	ANKRD11	5'UTR	0,48	0,38	0,45	-	0,0165	0,0308
cg22878441	ANKRD11	5'UTR	0,03	-	0,07	0,0412	-	-
cg26264697	ANKRD11	TSS1500	0,12	-	0,04	0,0085	-	-
cg09971754	ANKRD11	TSS1500	0,12	0,04	-	-	0,0089	-
cg13681935	ASIP	Corpo	0,73	0,88	0,88	0,0047	0,0006	-
cg19218509	ASIP	Corpo	0,46	0,29	0,32	0,0074	0,0039	-
cg16440058	ASIP	Corpo	0,43	0,31	0,40	-	0,0006	0,0248
cg05267394	ASIP	Corpo	0,42	0,30	-	-	0,0147	-
cg16655240	ASIP	3'UTR	0,30	0,05	0,09	0,0021	0,0017	0,0440
cg07044422	BNC2	3'UTR	0,97	-	0,93	0,0425	-	-
cg24386135	BNC2	Corpo	0,84	-	0,69	0,0092	-	-
cg14478713	BNC2	Corpo	0,84	0,61	0,69	-	0,0027	0,0111
cg27262398	BNC2	Corpo	0,05	-	0,17	0,0173	-	-
cg14157107	BNC2	Corpo	0,04	0,12	-	-	0,0153	-
cg24465329	BNC2	Corpo	0,03	-	0,07	0,0274	-	-
cg14530275	BNC2	Corpo	0,03	0,07	-	-	0,0143	-
cg16765600	BNC2	Corpo	0,11	-	0,32	0,0014	-	-
cg14613546	BNC2	Corpo	0,10	0,27	-	-	0,0003	-
cg02689785	BNC2	Corpo	0,12	-	0,19	0,0106	-	-
cg14185717	BNC2	Corpo	-	0,10	0,18	-	-	0,0106
cg12364136	BNC2	TSS1500	0,34	-	0,24	0,0011	-	-
cg05674150	BNC2	TSS1500	0,34	0,21	-	-	0,0118	-
cg16504670	DEF8	TSS1500	0,47	0,41	-	-	0,0397	-
cg23962746	DEF8	TSS1500	0,34	-	0,13	0,0016	-	-
cg04752812	DEF8	TSS1500	0,34	0,12	-	-	0,0003	-
cg12468786	DEF8	TSS1500	0,31	-	0,12	0,0012	-	-
cg03721293	DEF8	TSS1500	0,31	0,11	-	-	0,0018	-
cg11944127	DEF8	5'UTR	0,05	-	0,10	0,0103	-	-
cg01883217	DEF8	5'UTR	0,05	0,10	-	-	0,0115	-
cg05185784	DEF8	5'UTR	0,46	0,59	-	-	0,0017	-
cg14724749	DEF8	5'UTR	0,81	-	0,67	0,0016	-	-

cg26894841	DEF8	5'UTR	0,81	0,67	-	-	0,0013	-
cg03987653	DEF8	Corpo	0,45	0,50	-	-	0,0403	-
cg17576316	DEF8	Corpo	0,95	-	0,88	0,0396	-	-
cg06358564	DEF8	Corpo	0,95	0,90	-	-	0,0070	-
cg15096140	HERC2	3'UTR	0,79	-	0,92	0,0089	-	-
cg14549093	HERC2	3'UTR	0,79	0,90	-	-	0,0035	-
cg12605148	HERC2	3'UTR	0,90	0,94	-	-	0,0309	-
cg09689686	HERC2	Corpo	-	0,90	0,94	-	-	0,0476
cg27374167	HERC2	Corpo	0,29	0,51	0,88	-	0,0004	0,0017
cg02274366	HERC2	Corpo	0,30	-	0,89	0,0002	-	-
cg10839322	HERC2	Corpo	0,21	0,13	0,62	-	0,0103	0,0012
cg21885361	HERC2	Corpo	0,22	-	0,62	0,0002	-	-
cg04910587	HERC2	Corpo	0,90	-	0,95	0,0116	-	-
cg23040946	HERC2	Corpo	0,91	0,95	-	-	0,0205	-
cg24301414	HERC2	Corpo	0,85	-	0,90	0,0452	-	-
cg20080320	HERC2	Corpo	0,85	0,92	-	-	0,0222	-
cg00244776	HERC2	Corpo	0,02	-	0,33	0,0003	-	-
cg25622125	HERC2	Corpo	0,02	0,07	0,32	-	0,0276	0,0015
cg03162779	HERC2	Corpo	0,76	-	0,89	0,0006	-	-
cg05271345	HERC2	Corpo	0,76	0,84	0,89	-	0,0017	0,0176
cg22402467	HERC2	Corpo	0,85	-	0,94	0,0016	-	-
cg08423682	HERC2	Corpo	0,85	0,93	-	-	0,0044	-
cg09428340	HERC2	Corpo	0,54	-	0,89	0,0010	-	-
cg12304482	HERC2	Corpo	0,54	0,85	-	-	0,0013	-
cg13942627	HERC2	Corpo	0,79	-	0,94	0,0005	-	-
cg27418894	HERC2	Corpo	0,79	0,93	-	-	0,0005	-
cg24660635	HERC2	Corpo	0,72	0,67	-	-	0,0421	-
cg21113768	IRF4	Corpo	0,04	-	0,20	0,0004	-	-
cg07817739	IRF4	Corpo	-	0,03	0,20	-	-	0,0016
cg11417701	IRF4	Corpo	0,41	0,17	0,40	-	0,0002	0,0016
cg17336615	IRF4	Corpo	0,25	0,08	0,20	-	0,0004	0,0050
cg06219125	IRF4	Corpo	0,26	-	0,20	0,0057	-	-
cg07574896	IRF4	Corpo	0,23	0,19	-	-	0,0436	-
cg15211996	IRF4	3'UTR	0,65	-	0,51	0,0189	-	-
cg16478536	IRF4	3'UTR	0,65	0,41	-	-	0,0007	-
cg06878009	KITLG	3'UTR	0,97	-	0,94	0,0303	-	-
cg06613775	KITLG	3'UTR	0,97	0,89	0,94	-	0,0015	0,0146
cg15539879	KITLG	Corpo	0,52	0,43	0,65	-	0,0045	0,0101
cg01569339	KITLG	Corpo	0,53	-	0,65	0,0208	-	-
cg25281029	KITLG	Corpo	0,44	0,32	0,58	-	0,0435	0,0122

cg10247840	KITLG	Corpo	0,45	-	0,59	0,0015	-	-
cg17399545	KITLG	Corpo	0,06	0,20	0,11	-	0,0019	0,0109
cg03612201	KITLG	Corpo	0,06	-	0,12	0,0482	-	-
cg00237520	KITLG	TSS1500	0,07	-	0,03	0,0288	-	-
cg12708634	KITLG	TSS1500	0,07	0,03	-	-	0,0131	-
cg22032532	KITLG	TSS1500	0,31	0,08	0,13	-	0,0003	0,0226
cg19741675	KITLG	TSS1500	0,32	-	0,14	0,0005	-	-
cg19566648	KITLG	TSS1500	0,93	-	0,71	0,0054	-	-
cg05504354	KITLG	TSS1500	0,93	0,55	0,71	-	0,0002	0,0337
cg08627397	MC1R	TSS1500	0,17	-	0,27	0,0367	-	-
cg04177015	MC1R	1⁰Éxon	0,14	0,09	0,12	0,0461	0,0112	-
cg06475006	MC1R	1⁰Éxon	0,34	0,13	0,26	0,0041	0,0024	0,0259
cg01511465	MC1R	1⁰Éxon	0,16	0,06	0,08	0,0334	0,0168	-
cg02025435	MC1R	1⁰Éxon	0,35	0,06	0,13	0,0005	0,0002	0,0225
cg04513015	MC1R	1⁰Éxon	0,32	0,05	0,15	0,0009	0,0002	0,0099
cg07260333	MC1R	1⁰Éxon	0,53	0,29	0,31	0,0010	0,0006	-
cg06070625	MITF	Corpo	0,84	0,75	0,76	0,0094	0,0052	-
cg22875984	MITF	Corpo	0,85	-	0,89	0,0385	-	-
cg17482117	MITF	Corpo	-	0,50	0,66	-	-	0,0120
cg04811592	MITF	Corpo	0,05	0,32	0,40	0,0002	0,0003	0,0162
cg17445875	MITF	Corpo	0,97	0,97	0,92	0,0093	-	0,0219
cg11287400	MITF	Corpo	0,62	0,58	0,69	0,0079	0,0355	0,0056
cg13151171	MITF	Corpo	0,47	0,36	0,36	0,0101	0,0066	-
cg03831180	MITF	Corpo	0,16	0,09	0,09	0,0047	0,0025	-
cg18503031	MITF	Corpo	0,78	0,58	0,57	0,0049	0,0003	-
cg13523819	MITF	1⁰Éxon	0,77	0,55	0,58	0,0040	0,0009	-
cg06789445	MITF	Corpo	-	0,70	0,63	-	-	0,0418
cg01793161	MITF	Corpo	0,87	0,74	0,79	0,0052	0,0018	0,0382
cg16905280	MITF	TSS1500	0,04	0,15	0,18	0,0140	0,0011	-
cg11038507	MITF	TSS1500	0,05	0,06	0,12	0,0027	-	0,0141
cg06640206	MITF	TSS200	0,02	-	0,09	0,0038	-	-
cg13636907	MITF	Corpo	0,08	0,13	-	-	0,0097	-
cg07317047	MITF	Corpo	0,05	0,09	0,12	0,0052	0,0251	-
cg25129985	MITF	Corpo	0,85	0,90	0,91	0,0174	0,0463	-
cg24874749	MITF	3'UTR	0,91	-	0,96	0,0133	-	-
cg15194100	OCA2	Corpo	0,34	0,18	0,41	-	0,0009	0,0021
cg02173030	OCA2	Corpo	0,35	-	0,41	0,0264	-	-
cg11197905	OCA2	Corpo	0,77	-	0,71	0,0065	-	-
cg10273821	OCA2	Corpo	0,77	0,25	0,71	-	0,0002	0,0012
cg15843691	OCA2	Corpo	0,83	0,32	0,86	-	0,0002	0,0012

cg02987250	OCA2	Corpo	0,62	0,18	0,59	-	0,0002	0,0012	
cg18200150	OCA2	Corpo	0,63	-	0,59	0,0376	-	-	
cg18201070	OCA2	Corpo	0,92	0,89	-	-	0,0443	-	
cg10557828	OCA2	Corpo	0,91	-	0,87	0,0172	-	-	
cg05564836	OCA2	Corpo	0,91	0,95	0,87	-	0,0386	0,0054	
cg16117554	OCA2	Corpo	0,92	-	0,88	0,0245	-	-	
cg10948657	OCA2	Corpo	-	0,93	0,87	-	-	0,0369	
cg11707219	OCA2	Corpo	0,85	-	0,75	0,0327	-	-	
cg27658068	OCA2	Corpo	0,85	0,74	-	-	0,0243	-	
cg24943998	OCA2	Corpo	0,79	0,86	0,79	-	0,0149	0,0094	
cg16104915	OCA2	Corpo	0,90	-	0,85	0,0347	-	-	
cg24495528	OCA2	Corpo	0,75	-	0,83	0,0074	-	-	
cg02571678	OCA2	Corpo	0,75	0,90	0,83	-	0,0012	0,0076	
cg25051111	OCA2	Corpo	0,86	-	0,93	0,0023	-	-	
cg06996940	OCA2	Corpo	0,86	0,92	-	-	0,0157	-	
cg15704872	OCA2	Corpo	0,90	-	0,79	0,0281	-	-	
cg20906524	OCA2	Corpo	-	0,91	0,79	-	-	0,0103	
cg10467022	OCA2	Corpo	0,85	-	0,88	0,0296	-	-	
cg13531387	OCA2	Corpo	0,81	-	0,88	0,0040	-	-	
cg25605243	OCA2	Corpo	0,81	0,91	-	-	0,0018	-	
cg12761421	OCA2	Corpo	0,83	-	0,89	0,0416	-	-	
cg02393591	OCA2	Corpo	0,83	0,91	-	-	0,0401	-	
cg23744121	OCA2	Corpo	0,89	0,85	-	-	0,0252	-	
cg13569101	OCA2	Corpo	0,84	0,92	0,83	-	0,0323	0,0314	
cg06562644	OCA2	Corpo	0,92	-	0,97	0,0270	-	-	
cg27238470	OCA2	Corpo	0,91	-	0,96	0,0237	-	-	
cg20306534	OCA2	Corpo	0,83	-	0,94	0,0074	-	-	
cg17926792	OCA2	Corpo	0,83	0,92	-	-	0,0012	-	
cg01658421	OCA2	5'UTR	0,78	-	0,98	0,0013	-	-	
cg22449686	OCA2	5'UTR	0,78	0,97	-	-	0,0005	-	
cg20703122	OCA2	5'UTR	0,60	0,78	0,93	-	0,0094	0,0068	
cg12626968	OCA2	5'UTR	0,60	-	0,93	0,0014	-	-	
cg10564013	OCA2	5'UTR	0,08	-	0,19	0,0083	-	-	
cg16654595	OCA2	5'UTR	0,08	0,29	-	-	0,0032	-	
cg24624173	OCA2	5'UTR	0,11	-	0,22	0,0084	-	-	
cg02312175	OCA2	5'UTR	0,11	0,37	0,22	-	0,0002	0,0096	
cg07577267	OCA2	5'UTR	0,13	0,42	0,17	-	0,0002	0,0013	
cg13489987	OCA2	5'UTR	0,14	-	0,17	0,0394	-	-	
cg14494623	OCA2	5'UTR	0,02	0,11	0,02	-	0,0022	0,0073	
cg24636540	OCA2	5'UTR	0,13	-	0,25	0,0021	-	-	

cg12726354	OCA2	5'UTR	-	0,15	0,25	-	-	0,0078
cg21163559	OCA2	5'UTR	0,02	-	0,12	0,0010	-	-
cg13963891	OCA2	5'UTR	-	0,03	0,12	-	-	0,0044
cg05033529	PIGU	3'UTR	0,89	-	0,81	0,0026	-	-
cg21188280	PIGU	3'UTR	0,90	0,80	-	-	0,0013	-
cg05054831	PIGU	TSS1500	0,16	0,23	0,35	-	0,0389	0,0169
cg11833001	PIGU	TSS1500	0,16	-	0,35	0,0020	-	-
cg20064704	PIGU	TSS1500	-	0,95	0,90	-	-	0,0291
cg06964475	PIGU	TSS1500	0,91	-	0,72	0,0103	-	-
cg21778193	POMC	3'UTR	0,77	-	0,54	0,0028	-	-
cg03695597	POMC	3'UTR	0,93	-	0,61	0,0003	-	-
cg02451774	POMC	Corpo	0,65	-	0,36	0,0005	-	-
cg20140940	POMC	Corpo	0,83	-	0,44	0,0003	-	-
cg10474005	POMC	Corpo	0,98	-	0,86	0,0007	-	-
cg23739457	POMC	Corpo	0,91	-	0,68	0,0003	-	-
cg19288183	POMC	5'UTR	0,58	-	0,66	0,0325	-	-
cg04247568	POMC	5'UTR	0,70	-	0,57	0,0075	-	-
cg20509869	POMC	5'UTR	0,82	-	0,71	0,0051	-	-
cg27594683	POMC	TSS200	0,47	-	0,36	0,0073	-	-
cg07045857	POMC	TSS200	0,47	-	0,36	0,0195	-	-
cg09114153	POMC	TSS200	0,24	-	0,18	0,0177	-	-
cg25975071	POMC	TSS200	0,72	-	0,61	0,0011	-	-
cg25518571	POMC	TSS200	0,30	-	0,21	0,0015	-	-
cg20920827	POMC	TSS1500	0,76	-	0,69	0,0069	-	-
cg22980771	POMC	TSS1500	0,76	-	0,66	0,0025	-	-
cg27485402	SLC24A4	TSS1500	0,72	-	0,61	0,0093	-	-
cg12159314	SLC24A4	TSS1500	0,72	0,47	0,61	-	0,0011	0,0028
cg14101940	SLC24A4	TSS1500	0,96	-	0,89	0,0053	-	-
cg07031872	SLC24A4	TSS1500	0,96	0,92	-	-	0,0145	-
cg05146852	SLC24A4	TSS1500	0,92	-	0,76	0,0006	-	-
cg24195486	SLC24A4	TSS1500	0,92	0,77	-	-	0,0005	-
cg15977685	SLC24A4	TSS1500	0,78	-	0,51	0,0005	-	-
cg14512346	SLC24A4	TSS1500	0,78	0,52	-	-	0,0004	-
cg01064918	SLC24A4	1⁰Éxon	0,37	0,25	0,32	-	0,0131	0,0321
cg23580725	SLC24A4	TSS1500	0,40	-	0,19	0,0003	-	-
cg18587837	SLC24A4	TSS1500	0,39	0,14	-	-	0,0002	-
cg03840289	SLC24A4	Corpo	0,12	-	0,04	0,0022	-	-
cg04556542	SLC24A4	Corpo	0,12	0,04	-	-	0,0019	-
cg11294692	SLC24A4	Corpo	0,32	0,11	0,21	-	0,0003	0,0037
cg16604218	SLC24A4	Corpo	0,33	-	0,21	0,0010	-	-

cg10113212	SLC24A4	Corpo	0,41	0,16	0,23	-	0,0007	0,0243
cg27336068	SLC24A4	Corpo	0,42	-	0,23	0,0020	-	-
cg01649853	SLC24A4	Corpo	0,92	0,81	-	-	0,0062	-
cg03493774	SLC24A4	Corpo	0,49	0,85	0,68	-	0,0009	0,0190
cg09705784	SLC24A4	Corpo	0,49	-	0,68	0,0010	-	-
cg22488164	SLC24A5	TSS1500	0,23	-	0,42	0,0152	-	-
cg24125468	SLC24A5	TSS1500	0,22	0,50	-	-	0,0005	-
cg04424621	SLC24A5	Corpo	0,93	-	0,96	0,0419	-	-
cg06510647	SLC45A2	Corpo	0,59	-	0,86	0,0043	-	-
cg03212131	SLC45A2	Corpo	0,59	0,91	-	-	0,0015	-
cg17559156	SLC45A2	Corpo	0,88	-	0,93	0,0100	-	-
cg11241413	SLC45A2	Corpo	0,88	0,93	-	-	0,0095	-
cg05369766	SLC45A2	Corpo	0,98	-	0,72	0,0005	-	-
cg02074780	SLC45A2	Corpo	0,98	0,94	0,72	-	0,0296	0,0028
cq22136013	SLC45A2	1⁰Éxon	0,73	-	0,11	0,0002	-	-
5								
cg04302388	SLC45A2	1⁰Éxon	0,73	0,18	0,10	-	0,0002	0,0080
cg04302388 cg14189614	SLC45A2 SLC45A2	1⁰Éxon 1⁰Éxon	0,73 0,93	0,18 0,19	0,10 0,13	- 0,0002	0,0002 0,0002	0,0080 0,0100
cg04302388 cg14189614 cg08626932	SLC45A2 SLC45A2 SLC45A2	1⁰Éxon 1⁰Éxon 5'UTR	0,73 0,93 0,16	0,18 0,19 -	0,10 0,13 0,01	- 0,0002 0,0005	0,0002 0,0002 -	0,0080 0,0100 -
cg04302388 cg14189614 cg08626932 cg05018638	SLC45A2 SLC45A2 SLC45A2 SLC45A2	1⁰Éxon 1⁰Éxon 5'UTR 5'UTR	0,73 0,93 0,16 0,15	0,18 0,19 - 0,01	0,10 0,13 0,01 -	- 0,0002 0,0005 -	0,0002 0,0002 - 0,0004	0,0080 0,0100 - -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2	1⁰Éxon 1⁰Éxon 5'UTR 5'UTR TSS200	0,73 0,93 0,16 0,15 0,20	0,18 0,19 - 0,01 -	0,10 0,13 0,01 - 0,03	- 0,0002 0,0005 - 0,0004	0,0002 0,0002 - 0,0004 -	0,0080 0,0100 - -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2	1⁰Éxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200	0,73 0,93 0,16 0,15 0,20 0,19	0,18 0,19 - 0,01 - 0,04	0,10 0,13 0,01 - 0,03 -	- 0,0002 0,0005 - 0,0004 -	0,0002 0,0002 - 0,0004 - 0,0005	0,0080 0,0100 - - - -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 TUBB3	1⁰Éxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200 Corpo	0,73 0,93 0,16 0,15 0,20 0,19 0,17	0,18 0,19 - 0,01 - 0,04 -	0,10 0,13 0,01 - 0,03 - 0,09	- 0,0002 0,0005 - 0,0004 - 0,0157	0,0002 0,0002 - 0,0004 - 0,0005 -	0,0080 0,0100 - - - - - -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790 cg05183487	SLC45A2 SLC45A2 <i>SLC45A2</i> <i>SLC45A2</i> <i>SLC45A2</i> <i>SLC45A2</i> <i>TUBB3</i> <i>TUBB3</i>	1ºÉxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200 Corpo Corpo	0,73 0,93 0,16 0,15 0,20 0,19 0,17	0,18 0,19 - 0,01 - 0,04 - 0,15	0,10 0,13 0,01 - 0,03 - 0,09 0,09	- 0,0002 0,0005 - 0,0004 - 0,0157 -	0,0002 0,0002 - 0,0004 - 0,0005 - -	0,0080 0,0100 - - - - - - 0,0423
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790 cg05183487 cg26325286	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 TUBB3 TUBB3	1ºÉxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200 Corpo Corpo Corpo	0,73 0,93 0,16 0,15 0,20 0,19 0,17 - 0,87	0,18 0,19 - 0,01 - 0,04 - 0,15 -	0,10 0,13 0,01 - 0,03 - 0,09 0,09 0,83	- 0,0002 0,0005 - 0,0004 - 0,0157 - 0,0423	0,0002 0,0002 - 0,0004 - 0,0005 - - - -	0,0080 0,0100 - - - - - 0,0423 -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790 cg05183487 cg26325286 cg06912355	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 TUBB3 TUBB3 TUBB3 TUBB3	1ºÉxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200 Corpo Corpo Corpo 3'UTR	0,73 0,93 0,16 0,15 0,20 0,19 0,17 - 0,87 0,77	0,18 0,19 - 0,01 - 0,04 - 0,15 - 0,72	0,10 0,13 0,01 - 0,03 - 0,09 0,09 0,83 -	- 0,0002 0,0005 - 0,0004 - 0,0157 - 0,0423 -	0,0002 0,0002 - 0,0004 - 0,0005 - - - - - 0,0325	0,0080 0,0100 - - - - 0,0423 - -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790 cg05183487 cg26325286 cg06912355 cg03922479	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3	1ºÉxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200 Corpo Corpo Corpo 3'UTR 3'UTR	0,73 0,93 0,16 0,15 0,20 0,19 0,17 - 0,87 0,87 0,77 0,66	0,18 0,19 - 0,01 - 0,04 - 0,15 - 0,72 0,59	0,10 0,13 0,01 - 0,03 - 0,09 0,09 0,83 - 0,76	- 0,0002 0,0005 - 0,0004 - 0,0157 - 0,0423 - -	0,0002 0,0004 - 0,0005 - - 0,0025 0,0325 0,0302	0,0080 0,0100 - - - - 0,0423 - - 0,0423
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790 cg05183487 cg26325286 cg06912355 cg03922479 cg02010752	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3	1ºÉxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200 Corpo Corpo Corpo 3'UTR 3'UTR 3'UTR	0,73 0,93 0,16 0,15 0,20 0,19 0,17 - 0,87 0,77 0,66 0,67	0,18 0,19 - 0,01 - 0,04 - 0,15 - 0,72 0,59 -	0,10 0,13 0,01 - 0,03 - 0,09 0,09 0,09 0,83 - 0,76 0,76	- 0,0002 0,0005 - 0,0004 - 0,0157 - 0,0423 - - - 0,0423	0,0002 0,0002 - 0,0004 - 0,0005 - - 0,0325 0,0302 -	0,0080 0,0100 - - - - 0,0423 - - 0,0017 -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790 cg05183487 cg26325286 cg06912355 cg03922479 cg02010752 cg02010752	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3	1ºÉxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200 Corpo Corpo 3'UTR 3'UTR 3'UTR 3'UTR	0,73 0,93 0,16 0,15 0,20 0,19 0,17 - 0,87 0,77 0,66 0,67 0,02	0,18 0,19 - 0,01 - 0,04 - 0,15 - 0,72 0,59 - -	0,10 0,13 0,01 - 0,03 - 0,09 0,09 0,83 - 0,76 0,76 0,08	- 0,0002 0,0005 - 0,0004 - 0,0157 - 0,0423 - - 0,0423 0,0423	0,0002 0,0002 - 0,0004 - 0,0005 - - 0,0325 0,0302 - -	0,0080 0,0100 - - - - 0,0423 - - 0,0017 - - -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790 cg05183487 cg26325286 cg06912355 cg06912355 cg03922479 cg02010752 cg23622162	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3	1ºÉxon 1ºÉxon 5'UTR 5'UTR TSS200 TSS200 Corpo Corpo 3'UTR 3'UTR 3'UTR 3'UTR TSS200 TSS200	0,73 0,93 0,16 0,20 0,19 0,17 - 0,87 0,87 0,66 0,67 0,66 0,67 0,02	0,18 0,19 - 0,01 - 0,04 - 0,15 - 0,72 0,59 - - - -	0,10 0,13 0,01 - 0,03 - 0,09 0,09 0,83 - 0,76 0,76 0,76 0,08 0,14	- 0,0002 0,0005 - 0,0004 - 0,0157 - 0,0423 - - 0,0423 - - 0,0126 0,0120 0,0020	0,0002 0,0002 - 0,0004 - 0,0005 - - 0,0325 0,0302 - - - - - - - - - - - - - - - - - - -	0,0080 0,0100 - - - - 0,0423 - 0,0017 - - - 0,0017 - - - -
cg04302388 cg14189614 cg08626932 cg05018638 cg09837116 cg23430771 cg20807790 cg05183487 cg26325286 cg06912355 cg03922479 cg03922479 cg02010752 cg23622162 cg18142262	SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 SLC45A2 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TUBB3 TVBB3 TYR	1ºÉxon 1ºÉxon 5'UTR 5'UTR TSS200 Corpo Corpo Corpo 3'UTR 3'UTR 3'UTR 3'UTR TSS200 TSS200	0,73 0,93 0,16 0,15 0,20 0,19 0,17 - 0,87 0,77 0,66 0,67 0,02 0,05 -	0,18 0,19 - 0,01 - 0,04 - 0,15 - 0,72 0,59 - - - - - 0,06	0,10 0,13 0,01 - 0,03 - 0,09 0,09 0,09 0,83 - 0,76 0,76 0,76 0,08 0,14 0,13	- 0,0002 0,0005 - 0,0004 - 0,0157 - 0,0423 - 0,0423 0,0423 0,0120 0,0120 0,0020	0,0002 0,0004 - 0,0005 - 0,0325 0,0302 - - - - - - - - - - - - -	0,0080 0,0100 - - - 0,0423 - 0,00423 - 0,0017 - - 0,0088

*1ºÉxon: primeiro éxon; TSS1500: 1.500 a 201 pb *upstream* em relação ao local de início da transcrição; TSS200: 200 pb *upstream* em relação ao local de início da transcrição; 5'UTR e 3'UTR: regiões 5' e 3' não traduzidas; Corpo: região gênica exceto promotora, UTRs e primeiro éxon.

**Em negrito se encontram as DMPs utilizadas para a plotagem dos gráficos.

Tabela B2 - Total de DMPs encontradas nas análises entre melanócitos e fibroblastos (M x F), queratinócitos (M x Q) e leucócitos (M x L)

ПМР	Gono	Pogião*		Valor	beta		Va	alor <i>p</i> ajustado	do
DIAIL	Gene	Regiao" —	Μ	F	Q	L	МхF	M x Q	МхL

	<u>.</u>								
cg04035353	ANKRD11	Corpo	0,92	-	0,85	-	-	2,14E-02	-
cg02033182	ANKRD11	Corpo	0,83	-	0,71	0,80	-	2,54E-05	8,96E-03
cg04381043	ANKRD11	Corpo	0,93	-	-	0,96	-	-	2,32E-02
cg06098690	ANKRD11	Corpo	0,87	-	-	0,95	-	-	2,22E-02
cg10256077	ANKRD11	Corpo	0,91	-	-	0,94	-	-	1,03E-02
cg01149053	ANKRD11	Corpo	0,80	-	-	0,68	-	-	4,70E-03
cg03092447	ANKRD11	Corpo	0,85	0,79	-	-	2,30E-02	-	-
cg09867358	ANKRD11	Corpo	0,92	0,86	0,96	0,95	7,27E-04	2,21E-03	2,54E-03
cg03507846	ANKRD11	Corpo	0,91	-	-	0,97	-	-	4,38E-02
cg26747517	ANKRD11	Corpo	0,89	-	-	0,84	-	-	1,42E-02
cg11051669	ANKRD11	Corpo	0,93	-	-	0,96	-	-	1,46E-02
cg04519550	ANKRD11	Corpo	0,83	0,95	0,95	0,76	9,61E-04	5,38E-04	1,25E-02
cg06636372	ANKRD11	Corpo	0,95	-	-	0,97	-	-	3,03E-02
cg00199000	ANKRD11	Corpo	0,92	-	-	0,97	-	-	3,22E-02
cg27372713	ANKRD11	Corpo	0,88	0,75	-	-	2,53E-03	-	-
cg03317919	ANKRD11	Corpo	0,90	0,86	0,95	0,95	1,56E-02	2,31E-02	4,62E-03
cg01875529	ANKRD11	Corpo	0,95	0,86	-	-	3,29E-04	-	-
cg09776094	ANKRD11	Corpo	0,84	0,72	0,75	0,91	1,30E-04	1,34E-03	3,27E-03
cg27207530	ANKRD11	Corpo	0,89	0,87	-	0,91	2,62E-02	-	3,38E-02
cg09220891	ANKRD11	Corpo	0,56	-	-	0,83	-	-	5,02E-03
cg02487202	ANKRD11	Corpo	0,78	0,65	-	0,90	5,30E-03	-	8,79E-03
cg03025000	ANKRD11	Corpo	0,94	0,90	-	0,88	2,10E-02	-	4,48E-04
cg27267258	ANKRD11	Corpo	0,94	0,90	-	-	5,67E-03	-	-
cg07108351	ANKRD11	Corpo	0,85	0,60	-	0,95	1,83E-04	-	6,96E-03
cg00332509	ANKRD11	Corpo	0,87	0,40	0,90	0,92	3,04E-08	3,16E-02	4,64E-03
cg26957471	ANKRD11	Corpo	0,80	0,41	-	0,66	7,62E-08	-	3,57E-05
cg05780014	ANKRD11	Corpo	0,77	0,58	-	0,61	1,04E-04	-	2,78E-04
cg26783123	ANKRD11	Corpo	0,34	-	0,86	0,92	-	2,84E-05	1,32E-05
cg04503319	ANKRD11	Corpo	0,13	-	0,80	0,63	-	3,60E-07	9,52E-07
cg00005072	ANKRD11	Corpo	0,89	-	-	0,85	-	-	4,29E-02
cg02930721	ANKRD11	Corpo	0,96	-	-	0,87	-	-	4,97E-06
cg05356511	ANKRD11	Corpo	0,89	-	0,97	0,76	-	3,00E-02	2,78E-03
cg16710656	ANKRD11	Corpo	0,96	0,48	-	0,88	1,50E-07	-	2,51E-05
cg04533078	ANKRD11	Corpo	0,84	0,44	0,72	0,38	1,38E-06	1,39E-03	3,47E-07

cg08284993	ANKRD11	Corpo	0,95	-	-	0,36	-	-	8,02E-10
cg08527124	ANKRD11	Corpo	0,16	-	0,57	-	-	2,24E-02	-
cg02415470	ANKRD11	5'UTR	0,75	-	0,62	-	-	4,93E-02	-
cg08721324	ANKRD11	5'UTR	0,97	-	0,94	0,49	-	1,14E-02	1,69E-10
cg09164168	ANKRD11	5'UTR	0,95	0,70	0,61	0,71	7,54E-06	2,01E-06	2,45E-06
cg05081845	ANKRD11	5'UTR	0,96	0,89	-	0,85	1,65E-03	-	1,55E-05
cg26546229	ANKRD11	5'UTR	0,94	0,69	-	-	1,88E-06	-	-
cg07511934	ANKRD11	5'UTR	0,04	-	-	0,23	-	-	4,09E-08
cg07708487	ANKRD11	5'UTR	0,08	-	-	0,53	-	-	4,44E-06
cg27247807	ANKRD11	5'UTR	0,70	0,21	0,31	0,89	1,40E-06	3,16E-06	2,42E-04
cg27300957	ANKRD11	5'UTR	0,78	0,31	0,03	0,88	3,27E-08	8,91E-10	4,73E-05
cg09420319	ANKRD11	5'UTR	0,96	0,67	0,09	-	2,10E-06	7,56E-10	-
cg08311935	ANKRD11	5'UTR	0,78	0,56	0,05	0,91	5,16E-05	3,92E-08	9,57E-04
cg27150870	ANKRD11	5'UTR	0,82	0,88	0,94	0,88	3,29E-02	7,60E-04	2,41E-02
cg00759807	ANKRD11	5'UTR	0,92	0,67	0,95	0,78	2,43E-07	-	4,23E-06
cg08134863	ANKRD11	5'UTR	0,94	0,42	-	0,86	1,28E-05	-	2,88E-03
cg01976303	ANKRD11	5'UTR	0,86	-	-	0,75	-	-	4,25E-03
cg16386046	ANKRD11	5'UTR	0,96	-	-	0,93	-	-	3,93E-02
cg05504729	ANKRD11	5'UTR	0,38	0,19	0,60	0,58	3,45E-03	2,30E-03	1,41E-03
cg05944840	ANKRD11	5'UTR	0,49	-	0,69	-	-	1,51E-02	-
cg07054502	ANKRD11	5'UTR	0,79	0,45	-	0,60	9,45E-05	-	2,20E-03
cg01523769	ANKRD11	5'UTR	0,93	0,88	-	0,91	1,86E-04	-	8,68E-03
cg03517226	ANKRD11	5'UTR	0,96	0,91	0,91	0,75	5,99E-04	1,37E-03	7,96E-08
cg06873916	ANKRD11	5'UTR	0,70	-	0,93	0,94	-	2,65E-04	2,28E-04
cg27468976	ANKRD11	5'UTR	0,73	0,14	0,95	0,96	1,35E-06	3,35E-04	2,73E-04
cg26481727	ANKRD11	5'UTR	0,51	0,16	0,88	0,90	8,42E-05	5,71E-05	3,87E-05
cg05071195	ANKRD11	5'UTR	0,76	0,21	0,86	0,87	2,40E-07	5,02E-03	2,54E-03
cg05507697	ANKRD11	5'UTR	0,61	0,87	0,91	0,89	4,59E-03	2,03E-03	3,13E-03
cg06411447	ANKRD11	5'UTR	0,38	0,74	0,81	0,71	5,22E-05	1,97E-05	1,09E-04
cg01619533	ANKRD11	5'UTR	0,58	0,92	0,94	0,83	2,88E-03	2,17E-03	1,25E-02
cg06159562	ANKRD11	5'UTR	0,96	-	-	0,53	-	-	2,88E-07
cg06660116	ANKRD11	5'UTR	0,97	-	-	0,99	-	-	4,43E-02
cg08420923	ANKRD11	5'UTR	0,49	0,11	0,03	0,76	2,20E-05	7,53E-06	1,28E-04
cg09033641	ANKRD11	5'UTR	0,29	0,21	0,04	0,87	3,95E-02	1,87E-04	1,33E-06

cg07447015	ANKRD11	5'UTR	0,94	0,91	-	-	2,61E-02	-	-
cg09537792	ANKRD11	5'UTR	0,96	0,69	-	-	1,01E-06	-	-
cg16442258	ANKRD11	5'UTR	0,87	-	-	0,95	-	-	2,22E-02
cg06783428	ANKRD11	5'UTR	0,88	0,98	0,97	0,98	1,56E-02	2,38E-02	1,24E-02
cg08417142	ANKRD11	5'UTR	0,51	0,95	0,94	0,95	1,14E-03	1,17E-03	1,07E-03
cg08583277	ANKRD11	5'UTR	0,02	0,69	0,96	0,84	3,71E-10	1,76E-10	3,69E-11
cg08549241	ANKRD11	5'UTR	0,10	0,67	0,87	0,89	1,02E-05	1,32E-06	1,34E-06
cg05638739	ANKRD11	5'UTR	0,40	0,68	0,74	0,85	1,10E-03	4,09E-04	7,58E-05
cg16525838	ANKRD11	5'UTR	0,64	0,94	0,94	0,87	1,55E-03	1,70E-03	6,04E-03
cg06567829	ANKRD11	5'UTR	0,16	0,65	0,88	0,89	9,57E-04	8,32E-05	7,82E-05
cg00770754	ANKRD11	5'UTR	0,19	0,71	-	0,96	6,87E-04	6,11E-05	7,01E-05
cg03163759	ANKRD11	5'UTR	0,18	0,52	0,87	0,86	1,17E-02	2,97E-04	3,18E-04
cg08057432	ANKRD11	5'UTR	0,39	0,79	0,97	0,88	1,55E-03	9,12E-05	2,66E-04
cg26946905	ANKRD11	5'UTR	0,19	0,70	0,96	0,95	3,77E-03	3,93E-04	4,28E-04
cg02582213	ANKRD11	5'UTR	0,12	0,82	0,95	0,96	8,98E-05	2,86E-05	2,45E-05
cg00926926	ANKRD11	5'UTR	0,95	0,46	0,68	-	4,58E-08	2,37E-07	-
cg08595667	ANKRD11	5'UTR	0,96	0,55	0,90	-	3,72E-09	2,64E-04	-
cg00488747	ANKRD11	5'UTR	0,95	0,51	0,92	-	1,10E-07	1,51E-02	-
cg06270206	ANKRD11	5'UTR	0,92	-	-	0,85	-	-	9,57E-04
cg10110957	ANKRD11	5'UTR	0,84	0,73	0,23	0,78	4,31E-03	1,20E-07	4,47E-02
cg02226192	ANKRD11	5'UTR	0,05	-	-	0,42	-	-	2,50E-06
cg06365976	ANKRD11	5'UTR	0,92	0,51	0,77	0,98	4,17E-07	1,39E-04	7,86E-03
cg00675737	ANKRD11	5'UTR	0,54	0,28	0,66	0,90	4,87E-06	4,07E-04	5,03E-07
cg07118196	ANKRD11	5'UTR	0,75	0,22	0,77	0,91	4,93E-08	4,98E-02	1,34E-06
cg05900234	ANKRD11	5'UTR	0,93	0,82	-	0,86	3,69E-04	-	3,06E-03
cg03258727	ANKRD11	5'UTR	0,98	-	-	0,96	-	-	1,84E-02
cg07746351	ANKRD11	5'UTR	0,81	0,88	0,88	0,89	1,88E-04	8,55E-04	7,68E-05
cg04340114	ANKRD11	5'UTR	0,98	0,03	0,94	0,96	2,48E-10	5,95E-04	3,31E-03
cg01543603	ANKRD11	5'UTR	0,88	-	-	0,13	-	-	8,10E-08
cg00206490	ANKRD11	5'UTR	0,81	-	-	0,27	-	-	1,48E-05
cg05493336	ANKRD11	5'UTR	0,64	-	0,78	0,44	-	1,30E-02	1,59E-03
cg05749855	ANKRD11	5'UTR	0,96	0,40	-	-	1,88E-08	-	-
cg09486407	ANKRD11	5'UTR	0,94	-	0,90	-	-	2,25E-02	-
cg09222577	ANKRD11	5'UTR	0,52	0,42	-	0,69	1,09E-02	-	2,56E-04

cg09971549	ANKRD11	5'UTR	0,64	-	0,42	-	-	3,25E-02	-
cg00169122	ANKRD11	5'UTR	0,87	-	-	0,64	-	-	1,05E-02
cg09907628	ANKRD11	5'UTR	0,27	0,33	0,52	0,77	1,45E-02	1,07E-05	2,10E-07
cg02192318	ANKRD11	5'UTR	0,87	-	0,53	-	-	3,31E-06	-
cg12914530	ANKRD11	5'UTR	0,93	0,97	0,61	-	1,56E-02	7,54E-08	-
cg06039074	ANKRD11	5'UTR	0,84	-	-	0,08	-	-	2,01E-09
cg26536240	ANKRD11	5'UTR	0,63	0,04	0,01	0,70	2,19E-07	1,35E-07	1,17E-02
cg16437021	ANKRD11	5'UTR	0,79	0,25	0,03	0,29	2,91E-05	3,40E-06	4,06E-05
cg05665651	ANKRD11	5'UTR	0,83	0,66	0,05	0,89	2,13E-04	1,19E-08	1,37E-02
cg09300089	ANKRD11	5'UTR	0,95	0,90	0,88	0,13	3,84E-03	2,88E-04	5,57E-11
cg05320533	ANKRD11	5'UTR	0,58	-	-	0,84	-	-	2,46E-02
cg16765487	ANKRD11	5'UTR	0,95	0,58	0,21	-	3,66E-07	9,04E-10	-
cg08726900	ANKRD11	5'UTR	0,96	-	0,98	0,24	-	2,65E-02	8,33E-11
cg05288253	ANKRD11	5'UTR	0,45	-	0,77	0,59	-	3,32E-04	1,44E-02
cg00559967	ANKRD11	TSS200	0,05	-	-	0,02	-	-	1,32E-02
cg06477423	ANKRD11	TSS1500	0,01	-	-	0,02	-	-	3,42E-02
cg08098402	ANKRD11	TSS1500	0,02	-	0,05	-	-	4,85E-03	-
cg08240466	ASIP	TSS1500	0,82	-	0,72	-	-	2,25E-02	-
cg03658707	ASIP	Corpo	0,90	0,51	-	0,94	5,46E-07	-	4,02E-02
cg13681935	ASIP	Corpo	0,83	0,28	-	-	1,58E-04	-	-
cg16440058	ASIP	Corpo	0,38	-	0,12	-	-	2,53E-03	-
cg05267394	ASIP	Corpo	0,35	-	0,12	-	-	5,34E-03	-
cg14061067	BNC2	3'UTR	0,95	0,20	-	0,70	1,56E-08	-	6,02E-06
cg13471735	BNC2	Corpo	0,93	0,73	0,09	-	9,54E-07	6,32E-10	-
cg13659991	BNC2	Corpo	0,94	-	0,72	-	-	6,47E-06	-
cg14478713	BNC2	Corpo	0,72	-	0,08	-	-	3,36E-04	-
cg14157107	BNC2	Corpo	0,12	-	0,87	0,86	-	7,18E-06	3,34E-06
cg14530275	BNC2	Corpo	0,05	-	-	0,94	-	-	2,47E-09
cg13391872	BNC2	Corpo	0,96	-	-	0,93	-	-	7,83E-03
cg10916569	BNC2	Corpo	0,08	-	-	0,10	-	-	8,61E-03
cg24341129	BNC2	Corpo	0,05	0,46	-	0,33	3,04E-07	-	7,25E-08
cg14613546	BNC2	Corpo	0,24	0,95	0,92	0,96	1,57E-04	1,76E-04	1,13E-04
cg13452214	BNC2	Corpo	0,08	0,94	0,85	0,79	1,96E-09	7,05E-09	3,21E-09
cg07941680	BNC2	Corpo	0,04	-	-	0,30	-	-	6,78E-07

cg14185717	BNC2	Corpo	0,13	0,95	-	0,97	4,41E-07	-	2,01E-07
cg03291755	BNC2	Corpo	0,02	0,84	0,10	0,90	1,47E-09	3,89E-04	2,38E-10
cg05674150	BNC2	TSS1500	0,27	-	0,02	0,04	-	5,10E-03	1,01E-02
cg04591799	DEF8	TSS1500	0,89	0,70	-	-	2,31E-02	-	-
cg16504670	DEF8	TSS1500	0,44	0,63	0,71	0,68	6,70E-04	2,15E-04	1,67E-04
cg04752812	DEF8	TSS1500	0,20	-	-	0,49	-	-	2,58E-02
cg01883217	DEF8	5'UTR	0,08	-	-	0,20	-	-	1,09E-03
cg25193494	DEF8	5'UTR	0,63	0,39	0,73	0,84	1,10E-04	8,69E-03	1,55E-04
cg05185784	DEF8	5'UTR	0,52	0,19	-	-	4,97E-04	-	-
cg12064134	DEF8	5'UTR	0,56	0,35	0,67	0,68	3,08E-07	8,88E-04	6,01E-06
cg26894841	DEF8	5'UTR	0,72	0,48	0,89	0,95	8,77E-03	4,46E-02	9,60E-03
cg07329987	DEF8	5'UTR	0,94	0,89	-	-	5,27E-03	-	-
cg03987653	DEF8	Corpo	0,47	0,85	0,94	0,92	7,22E-06	1,62E-06	3,17E-06
cg00121465	DEF8	Corpo	0,78	0,62	0,56	0,87	2,35E-03	5,47E-04	3,84E-02
cg10075157	DEF8	Corpo	0,87	0,72	-	0,92	1,46E-04	-	2,81E-02
cg00026455	DEF8	3'UTR	0,86	0,71	-	0,93	1,94E-05	-	2,25E-03
cg08087034	DEF8	3'UTR	0,89	0,75	-	-	6,68E-04	-	-
cg10839322	HERC2	Corpo	0,33	0,97	0,89	0,96	1,95E-02	3,52E-02	1,90E-02
cg07567273	HERC2	Corpo	0,91	-	-	0,96	-	-	3,77E-02
cg17176002	HERC2	Corpo	0,94	0,90	-	-	8,17E-03	-	-
cg25059751	HERC2	Corpo	0,04	0,82	0,93	0,96	8,32E-10	2,91E-10	5,41E-11
cg25622125	HERC2	Corpo	0,14	0,95	0,97	0,98	5,84E-04	6,00E-04	4,10E-04
cg18139053	HERC2	Corpo	0,90	-	-	0,94	-	-	3,46E-02
cg24660635	HERC2	Corpo	0,71	0,23	0,96	0,95	1,58E-06	5,89E-05	6,44E-05
cg13166748	HERC2	Corpo	0,79	0,33	0,96	0,96	1,65E-07	4,95E-05	3,38E-05
cg22454673	HERC2	Corpo	0,85	0,81	-	-	1,69E-02	-	-
cg14178420	HERC2	Corpo	0,95	-	-	0,98	-	-	1,38E-02
cg10711095	HERC2	Corpo	0,95	-	-	0,98	-	-	3,28E-02
cg10379890	IRF4	TSS1500	0,03	0,07	0,06	-	1,46E-02	1,71E-02	-
cg06392169	IRF4	5'UTR	0,03	-	-	0,06	-	-	1,68E-03
cg12741420	IRF4	5'UTR	0,04	0,07	0,07	0,11	9,01E-03	4,37E-03	4,17E-05
cg24319508	IRF4	Corpo	0,04	0,40	0,80	0,79	1,48E-06	2,82E-09	1,85E-10
cg07817739	IRF4	Corpo	0,09	0,67	0,74	0,83	2,04E-04	1,33E-04	3,36E-05
cg11417701	IRF4	Corpo	0,33	0,84	0,91	0,91	2,29E-03	1,32E-03	1,16E-03

cg17336615	IRF4	Corpo	0,19	0,83	0,91	0,93	6,47E-05	4,19E-05	2,73E-05
cg07574896	IRF4	Corpo	0,22	0,80	0,83	0,90	2,73E-07	1,80E-07	9,52E-08
cg16478536	IRF4	3'UTR	0,52	-	0,86	-	-	1,33E-02	-
cg06613775	KITLG	3'UTR	0,94	0,35	-	-	7,67E-06	-	-
cg15539879	KITLG	Corpo	0,54	0,25	-	0,95	1,88E-02	-	3,07E-03
cg25281029	KITLG	Corpo	0,45	0,10	-	0,83	1,43E-02	-	1,03E-02
cg17399545	KITLG	Corpo	0,12	-	-	0,90	-	-	8,19E-06
cg02919030	KITLG	Corpo	0,03	-	-	0,05	-	-	3,61E-02
cg09446136	KITLG	TSS200	0,09	0,06	0,06	0,09	6,05E-03	1,53E-02	4,92E-02
cg27549952	KITLG	TSS1500	0,03	-	-	0,05	-	-	1,61E-02
cg01023759	MC1R	TSS1500	0,70	-	0,29	-	-	4,53E-05	-
cg08627397	MC1R	TSS1500	0,21	0,06	-	0,44	3,35E-02	-	2,13E-03
cg09028487	MC1R	5'UTR	0,02	-	0,07	-	-	3,35E-04	-
cg16790239	MC1R	5'UTR	0,02	0,04	0,06	0,05	2,36E-02	7,73E-04	1,97E-03
cg04177015	MC1R	1ºÉxon	0,13	0,56	0,54	0,78	5,34E-07	2,05E-06	3,83E-08
cg06475006	MC1R	1ºÉxon	0,24	0,91	0,91	0,99	1,98E-04	1,82E-04	1,01E-04
cg01511465	MC1R	1ºÉxon	0,10	0,98	0,97	0,97	9,65E-07	8,42E-07	9,02E-07
cg02025435	MC1R	1ºÉxon	0,18	0,97	0,97	0,98	3,62E-04	3,65E-04	3,54E-04
cg04513015	MC1R	1ºÉxon	0,17	0,97	0,85	0,95	2,17E-04	5,76E-04	2,45E-04
cg07260333	MC1R	1ºÉxon	0,38	-	-	0,88	-	-	2,36E-03
cg05277991	MITF	TSS1500	0,03	0,01	-	0,05	3,33E-02	-	8,78E-03
cg07499607	MITF	Corpo	0,07	-	-	0,14	-	-	1,18E-03
cg21178333	MITF	Corpo	0,98	-	-	0,95	-	-	1,85E-03
cg18496212	MITF	Corpo	0,13	0,33	0,96	0,28	5,27E-03	7,95E-07	4,25E-03
cg15909737	MITF	TSS1500	0,96	0,81	0,49	0,93	2,54E-04	1,62E-08	2,50E-02
cg15023858	MITF	TSS1500	0,89	-	0,64	-	-	4,42E-05	-
cg06070625									
Cg00070025	MITF	Corpo	0,79	-	0,14	-	-	2,19E-06	-
cg13685139	MITF MITF	Corpo Corpo	0,79 0,95	-	0,14 0,51	-	-	2,19E-06 1,15E-07	-
cg13685139 cg09325003	MITF MITF MITF	Corpo Corpo Corpo	0,79 0,95 0,45	- - 0,57	0,14 0,51 0,03	- - 0,57	- - 4,21E-03	2,19E-06 1,15E-07 1,23E-06	- - 9,16E-04
cg13685139 cg09325003 cg03847535	MITF MITF MITF MITF	Corpo Corpo Corpo Corpo	0,79 0,95 0,45 0,97	- - 0,57 -	0,14 0,51 0,03 0,44	- - 0,57 -	- - 4,21E-03 -	2,19E-06 1,15E-07 1,23E-06 1,78E-08	- - 9,16E-04 -
cg13685139 cg09325003 cg03847535 cg03489020	MITF MITF MITF MITF MITF	Corpo Corpo Corpo Corpo Corpo	0,79 0,95 0,45 0,97 0,91	- - 0,57 - 0,97	0,14 0,51 0,03 0,44 0,74	- 0,57 - 0,82	- 4,21E-03 - 1,59E-02	2,19E-06 1,15E-07 1,23E-06 1,78E-08 8,30E-05	- 9,16E-04 - 1,70E-03
cg13685139 cg09325003 cg03847535 cg03489020 cg22875984	MITF MITF MITF MITF MITF MITF	Corpo Corpo Corpo Corpo Corpo Corpo	0,79 0,95 0,45 0,97 0,91 0,87	- 0,57 - 0,97 0,65	0,14 0,51 0,03 0,44 0,74 -	- 0,57 - 0,82 -	- 4,21E-03 - 1,59E-02 4,67E-05	2,19E-06 1,15E-07 1,23E-06 1,78E-08 8,30E-05 -	- 9,16E-04 - 1,70E-03 -
cg13685139 cg09325003 cg03847535 cg03489020 cg22875984 cg17482117	MITF MITF MITF MITF MITF MITF	Corpo Corpo Corpo Corpo Corpo Corpo	0,79 0,95 0,45 0,97 0,91 0,87 0,59	- 0,57 - 0,97 0,65 0,86	0,14 0,51 0,03 0,44 0,74 - 0,86	- 0,57 - 0,82 - 0,88	- 4,21E-03 - 1,59E-02 4,67E-05 1,10E-02	2,19E-06 1,15E-07 1,23E-06 1,78E-08 8,30E-05 - 1,24E-02	- 9,16E-04 - 1,70E-03 - 8,32E-03

cg11287400	MITF	Corpo	0,64	0,35	0,81	0,85	4,34E-04	6,12E-03	1,63E-03
cg13151171	MITF	Corpo	0,40	-	0,09	0,78	-	1,04E-03	3,26E-04
cg03831180	MITF	Corpo	0,11	-	-	0,63	-	-	7,84E-06
cg18503031	MITF	Corpo	0,65	-	0,19	0,92	-	3,22E-03	2,80E-02
cg13523819	MITF	1ºÉxon	0,64	-	0,27	0,95	-	7,70E-03	1,45E-02
cg08652499	MITF	Corpo	0,94	0,51	0,75	0,80	1,43E-08	1,71E-06	3,29E-06
cg04535746	MITF	Corpo	0,98	-	0,92	0,94	-	4,00E-04	1,36E-04
cg06789445	MITF	Corpo	0,68	0,79	0,77	-	8,93E-03	1,90E-02	-
cg01793161	MITF	Corpo	0,81	-	0,95	-	-	3,60E-02	-
cg16905280	MITF	TSS1500	0,13	0,94	0,96	0,95	6,26E-06	5,86E-06	3,45E-06
cg11038507	MITF	TSS1500	0,08	0,93	0,97	0,97	1,10E-07	1,31E-07	3,03E-08
cg06640206	MITF	TSS200	0,06	0,94	0,90	0,97	1,05E-07	1,33E-07	2,70E-08
cg13636907	MITF	Corpo	0,12	0,92	0,94	0,94	3,05E-08	1,17E-08	6,64E-09
cg07317047	MITF	Corpo	0,09	0,93	0,93	0,96	9,39E-08	1,68E-07	2,55E-08
cg02643677	MITF	Corpo	0,09	0,39	0,92	0,95	1,34E-05	4,82E-08	1,26E-08
cg12441997	MITF	Corpo	0,95	0,98	0,99	0,99	1,27E-02	7,66E-03	6,92E-03
cg25129985	MITF	Corpo	0,89	0,98	0,96	0,97	1,06E-02	3,97E-02	2,16E-02
cg09678667	MITF	Corpo	0,93	0,96	-	-	2,84E-02	-	-
cg26388707	OCA2	3'UTR	0,95	0,87	0,86	0,87	9,59E-03	1,50E-03	1,60E-03
cg15194100	OCA2	Corpo	0,32	-	0,62	0,62	-	1,80E-02	1,36E-02
cg05328667	OCA2	Corpo	0,90	0,82	0,81	0,85	1,26E-02	1,46E-04	2,75E-03
cg18201070	OCA2	Corpo	0,90	-	0,80	-	-	2,17E-03	-
cg12661766	OCA2	Corpo	0,91	0,68	-	0,96	4,68E-05	-	3,36E-02
cg10266060	OCA2	Corpo	0,89	-	0,80	-	-	1,67E-03	-
cg10416294	OCA2	Corpo	0,95	0,54	-	-	2,01E-05	-	-
cg26426112	OCA2	Corpo	0,38	0,93	0,93	0,97	1,59E-05	2,39E-05	1,25E-05
cg13956907	OCA2	Corpo	0,97	0,60	-	-	4,20E-08	-	-
cg09554898	OCA2	Corpo	0,97	0,94	-	-	1,21E-02	-	-
cg24943998	OCA2	Corpo	0,81	0,48	-	0,24	5,51E-05	-	2,21E-06
cg26402630	OCA2	Corpo	0,96	0,90	0,90	-	7,10E-03	4,21E-03	-
cg11684572	OCA2	Corpo	0,92	-	-	0,86	-	-	5,28E-05
cg17519696	OCA2	Corpo	0,92	-	0,85	0,80	-	7,24E-03	1,36E-04
cg25744277	OCA2	Corpo	0,88	0,81	-	0,81	3,37E-02	-	8,40E-03
cg02571678	OCA2	Corpo	0,83	-	0,66	-	-	2,50E-02	-

cg20129314	OCA2	Corpo	0,94	0,88	-	0,90	7,68E-04	-	3,13E-03
cg02420024	OCA2	Corpo	0,96	0,92	0,41	-	5,58E-03	9,50E-09	-
cg06996940	OCA2	Corpo	0,91	-	0,45	-	-	3,25E-06	-
cg20906524	OCA2	Corpo	0,87	-	0,71	-	-	4,08E-02	-
cg19571715	OCA2	Corpo	0,87	0,73	0,66	-	6,63E-05	1,46E-05	-
cg25605243	OCA2	Corpo	0,87	0,77	-	-	4,01E-02	-	-
cg02393591	OCA2	Corpo	0,88	0,77	-	-	3,60E-02	-	-
cg13569101	OCA2	Corpo	0,87	0,64	0,75	-	3,16E-03	3,07E-02	-
cg23908019	OCA2	Corpo	0,95	-	-	0,90	-	-	3,90E-02
cg20703122	OCA2	5'UTR	0,77	-	0,35	0,33	-	2,00E-02	1,43E-02
cg04744917	OCA2	5'UTR	0,01	-	-	0,03	-	-	1,05E-02
cg07193234	OCA2	5'UTR	0,02	0,04	0,05	0,04	3,58E-02	7,52E-03	1,39E-02
cg09792204	OCA2	5'UTR	0,06	-	-	0,08	-	-	4,47E-02
cg13963891	OCA2	5'UTR	0,06	0,62	0,79	0,77	1,85E-05	3,74E-06	1,30E-06
cg22513857	OCA2	5'UTR	0,04	0,10	0,06	-	7,52E-05	2,97E-02	-
cg12902039	OCA2	1ºÉxon	0,03	0,36	0,20	0,11	3,03E-08	6,95E-07	9,12E-06
cg21567504	OCA2	TSS200	0,07	0,12	0,10	0,11	8,23E-04	2,26E-02	2,12E-03
cg09178700	OCA2	TSS200	0,07	0,11	-	-	2,02E-02	-	-
cg23163531	OCA2	TSS200	0,02	-	0,05	-	-	4,33E-02	-
cg10762626	OCA2	TSS1500	0,06	0,11	0,17	0,09	3,64E-03	1,20E-04	1,51E-02
cg15885628	OCA2	TSS1500	0,04	-	0,10	-	-	1,29E-03	-
cg20698924	OCA2	TSS1500	0,06	0,21	0,25	0,13	1,80E-04	2,06E-04	2,35E-03
cg08999081	PIGU	Corpo	0,43	0,75	0,93	0,87	1,87E-06	1,20E-07	5,88E-08
cg20807790	РОМС	Corpo	0,91	-	0,73	-	-	8,99E-03	-
cg14170547	РОМС	Corpo	0,92	0,78	0,95	-	1,31E-05	2,58E-02	-
cg14357535	РОМС	5'UTR	0,62	-	0,11	0,04	-	2,58E-06	1,33E-06
cg09527270	РОМС	5'UTR	0,86	0,45	0,95	0,71	8,99E-06	2,76E-02	2,00E-03
cg03560973	РОМС	5'UTR	0,62	0,25	0,92	0,41	7,98E-04	2,27E-03	1,33E-02
cg02079741	РОМС	5'UTR	0,73	0,36	0,93	-	1,36E-03	3,01E-02	-
cg09672383	РОМС	5'UTR	0,41	-	0,74	-	-	2,30E-03	-
cg13025668	РОМС	TSS200	0,27	0,13	0,03	0,11	4,23E-05	1,55E-06	1,74E-05
cg20387815	РОМС	TSS200	0,41	0,18	0,04	0,13	1,59E-03	1,11E-04	5,41E-04
cg01926269	РОМС	TSS200	0,42	0,17	0,04	0,13	1,13E-03	9,49E-05	6,32E-04
cg00674304	РОМС	TSS200	0,20	0,07	0,04	0,04	2,61E-03	9,98E-04	9,98E-04

cg24425171	РОМС	TSS200	0,65	0,28	0,07	0,21	3,40E-04	3,04E-05	1,61E-04
cg17736230	РОМС	TSS200	0,25	0,08	0,05	0,07	5,86E-03	1,99E-03	6,07E-03
cg22900229	РОМС	TSS1500	0,27	0,15	0,02	0,13	1,08E-03	1,02E-05	8,05E-04
cg16302441	РОМС	TSS1500	0,75	0,37	0,08	0,43	5,34E-05	1,68E-06	1,90E-04
cg08030082	РОМС	TSS1500	0,73	-	0,11	0,54	-	1,23E-05	1,06E-02
cg09916783	РОМС	TSS1500	0,80	0,38	0,06	0,18	2,49E-05	1,01E-06	2,89E-06
cg07031872	SLC24A4	TSS1500	0,92	0,51	0,51	0,62	3,09E-06	3,46E-06	1,49E-05
cg24195486	SLC24A4	TSS1500	0,82	0,16	0,29	0,54	8,11E-05	2,73E-04	7,78E-03
cg14512346	SLC24A4	TSS1500	0,61	0,10	0,10	0,16	5,29E-03	5,27E-03	1,07E-02
cg01064918	SLC24A4	1ºÉxon	0,31	0,11	0,10	0,15	6,41E-03	5,34E-03	1,54E-02
cg01802258	SLC24A4	TSS200	0,01	0,03	-	0,06	7,14E-03	-	1,58E-05
cg18229521	SLC24A4	1ºÉxon	0,03	-	-	0,07	-	-	2,70E-04
cg01649853	SLC24A4	Corpo	0,87	0,66	-	-	4,13E-03	-	-
cg16993582	SLC24A4	Corpo	0,89	0,82	0,84	0,83	5,02E-04	3,14E-03	1,42E-03
cg13993469	SLC24A4	Corpo	0,94	0,70	0,87	-	3,49E-07	3,96E-04	-
cg01499816	SLC24A4	Corpo	0,94	-	0,59	-	-	1,14E-07	-
cg16267322	SLC24A4	Corpo	0,98	0,01	0,83	0,57	7,45E-10	6,00E-05	2,92E-08
cg03493774	SLC24A4	Corpo	0,68	0,04	-	-	3,73E-03	-	-
cg19811934	SLC24A4	Corpo	0,90	0,25	-	0,43	5,08E-08	-	4,17E-08
cg11107966	SLC24A4	Corpo	0,91	0,25	-	0,17	4,64E-08	-	1,32E-08
cg21881330	SLC24A4	Corpo	0,94	0,77	0,88	-	1,96E-05	9,24E-03	-
cg05398544	SLC24A4	Corpo	0,93	0,88	0,90	-	6,53E-04	8,41E-03	-
cg16757332	SLC24A4	Corpo	0,95	-	0,77	-	-	2,28E-06	-
cg27088038	SLC24A4	Corpo	0,95	0,92	0,90	0,86	2,04E-02	2,50E-03	6,35E-05
cg05200313	SLC24A4	3'UTR	0,95	0,81	0,86	0,26	6,22E-05	2,80E-04	3,07E-09
cg24125468	SLC24A5	TSS1500	0,39	0,88	0,90	0,86	3,63E-03	2,67E-03	4,01E-03
cg09456905	SLC24A5	TSS1500	0,34	0,82	0,76	0,70	6,35E-05	1,19E-04	3,05E-04
cg19409156	SLC24A5	TSS200	0,05	0,95	0,98	0,96	6,73E-09	6,41E-09	2,05E-09
cg09625274	SLC24A5	TSS200	0,06	0,86	0,89	0,90	8,62E-09	2,37E-09	4,76E-10
cg01325409	SLC24A5	TSS200	0,05	0,67	0,75	0,79	3,50E-09	1,68E-09	1,48E-10
cg01497576	SLC24A5	5'UTR	0,03	0,82	0,91	0,85	4,63E-10	2,51E-10	5,58E-11
cg04643655	SLC24A5	1ºÉxon	0,04	0,49	0,60	0,61	2,78E-08	6,78E-09	8,12E-10
cg13223777	SLC24A5	Corpo	0,96	0,95	-	0,94	4,27E-02	-	1,06E-02
cg18242760	SLC24A5	Corpo	0,95	-	-	0,99	-	-	1,72E-02

cg11241413	SLC45A2	Corpo	0,92	0,66	0,85	0,80	3,87E-05	3,91E-02	2,78E-03
cg23047415	SLC45A2	Corpo	0,04	0,92	0,98	0,98	1,17E-09	7,85E-10	2,07E-10
cg05018638	SLC45A2	5'UTR	0,06	0,51	0,69	0,95	3,76E-04	6,91E-05	5,93E-06
cg23430771	SLC45A2	TSS200	0,09	0,45	0,69	0,95	2,18E-03	1,61E-04	1,41E-05
cg10752753	SLC45A2	TSS200	0,01	-	-	0,61	-	-	6,97E-11
cg17570188	SLC45A2	TSS1500	0,77	-	0,72	-	-	3,57E-02	-
cg15669092	TUBB3	TSS1500	0,04	-	-	0,08	-	-	3,27E-04
cg08975094	TUBB3	TSS1500	0,02	-	-	0,03	-	-	2,91E-02
cg13494498	TUBB3	Corpo	0,03	0,05	-	0,13	2,03E-02	-	2,43E-06
cg09826306	TUBB3	Corpo	0,02	-	-	0,09	-	-	6,10E-05
cg07516275	TUBB3	Corpo	0,04	-	-	0,09	-	-	3,22E-05
cg05936667	TUBB3	Corpo	0,02	-	0,04	-	-	3,58E-02	-
cg00867406	TUBB3	Corpo	0,97	-	-	0,94	-	-	8,22E-03
cg09387587	TUBB3	Corpo	0,87	0,93	0,93	0,93	7,97E-03	1,03E-02	7,89E-03
cg06912355	TUBB3	3'UTR	0,76	0,89	0,57	0,93	6,92E-03	7,42E-04	6,08E-04
cg03922479	TUBB3	3'UTR	0,68	-	0,40	-	-	7,01E-03	-
cg25941151	TYR	TSS200	0,05	0,77	0,30	0,77	1,42E-07	5,97E-05	4,27E-08
cg14705695	TYR	1ºÉxon	0,03	0,78	0,71	0,77	3,73E-06	2,59E-09	3,65E-10
cg02618229	TYR	Corpo	0,95	-	0,88	-	-	1,98E-02	-
cg25989745	TYRP1	TSS200	0,08	0,82	0,95	0,89	9,74E-07	5,12E-07	2,07E-07
cg05274944	TYRP1	5'UTR	0,07	0,96	0,97	0,94	9,61E-08	8,50E-08	4,24E-08
cg14542367	TYRP1	Corpo	0,07	0,88	0,94	0,81	5,02E-08	1,89E-10	6,55E-11

*1ºÉxon: primeiro éxon; TSS1500: 1.500 a 201 pb *upstream* em relação ao local de início da transcrição; TSS200: 200 pb *upstream* em relação ao local de início da transcrição; 5'UTR e 3'UTR: regiões 5' e 3' não traduzidas; Corpo: região gênica exceto promotora, UTRs e primeiro éxon.

**Em negrito se encontram as DMPs utilizadas para a plotagem dos gráficos.