• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.59.2007.tde-11092009-133630
Document
Author
Full name
Davi Serradella Vieira
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2007
Supervisor
Committee
Degreve, Leo (President)
Borin, Antonio Carlos
Garratt, Richard Charles
Samios, Dimitrios
Ward, Richard John
Title in Portuguese
Estrutura, termoestabilidade e atividade de xilanases: um estudo via simulação molecular
Keywords in Portuguese
dinâmica molecular
Termoestabilidade
xilanases
Abstract in Portuguese
As xilanases (EC 3.2.1.8), enzimas produzidas por diversos organismos, são capazes de hidrolisar as ligações -1,4 da cadeia principal da xilana, o mais abundante polissacarídeo hemicelulósico da natureza. O grande potencial biotecnológico das xilanases consiste na sua aplicação nas etapas de branqueamento do papel, nas quais a xilana é hidrolisada sob condição de temperatura elevada para facilitar a remoção da lignina (substância responsável pela coloração), diminuindo a quantidade de compostos clorados utilizados nestas etapas. A termoestabilidade e a especificidade pela xilana são as propriedades responsáveis pelo grande interesse biotecnológico e comercial que as xilanases têm atraído. As xilanases mesofílica, XBC, de temperatura ótima 55ºC (produzida pela bactéria Bacillus circulans) e termofílica, XTL, de temperatura ótima 70ºC (produxida pelo fungo Thermomyces lanuginosus) foram estudadas comparativamente por simulação de dinâmica. Os sistemas foram modelados pelo campo de força GROMOS-96(43A1) e as simulações realizadas pelo programa GROMACS 3.2. O objetivo do trabalho é relacionar as diferenças estruturais, energéticas e dinâmicas com as diferentes termostabilidades exibidas por estas enzimas. Os estudos por simulação sugerem claramente a existência de dois grandes tipos de regiões nas enzimas xilanases XBC e XTL: uma conservada e de grande estabilidade, que é o domínio palma, e a outra que pode sofrer grande movimentação, no caso o domínio polegar. Uma movimentação do tipo abre-fecha de dobradiça foi identificada. O monitoramento das ligações de hidrogênio inter/intramoleculares e pontes salinas ao longo do tempo e em função da temperatura permitem explicar clara e detalhadamente as diferentes termoestabilidades exibidas por duas proteínas da mesma família que compartilham de uma estrutura tridimensional altamente semelhante. Foi possível identificar 14 resíduos carregados que estão presentes na XTL e ausentes na XBC, tais resíduos devem ser considerados sítios potenciais de mutação na XBC. De uma maneira geral, tanto na XBC quanto na XTL, a presença do substrato não altera as características de cada domínio/região mas confere estabilidade para o domínio polegar. Nenhuma diferença clara na afinidade pelo substrato foi detectada pelas interações intermoleculares proteína-substrato.
Title in English
Structure, thermostability and activity of xylanases: a molecular dynamics study
Keywords in English
molecular dynamics
Thermostability
xylanases
Abstract in English
The enzymes xylanases (EC 3.2.1.8) are produced by several microorganisms and used to hydrolyze the -1,4 bonds of the xylan main chain, the most abundant hemicellulose in nature. The great biotechnological potential of the xylanases is due to its application in the pulp-bleaching processes when the xylan is hydrolyzed under high temperature condition to optimize the lignin removal. This procedure presents the advantage to reduce the amount of chlorine chemicals used in the pulp-bleaching process. The required properties of a biotechnologically useful xylanase include thermostability and high affinity for xylan. The mesophilic, XBC, (from Bacillus circulans) and thermophilic, XTL, (from Thermomyces lanuginosus) xylanases were studied by molecular dynamics simulations. The primary structures of these enzymes are almost completely different while the tertiary structures are identical. The objective of the study is to get some insight on the factors that are responsible for the xylanase thermostability. The systems were modeled by the GROMOS96-(43A1) force field and the molecular dynamic simulations were performed by the GROMACS 3.2 package in the temperature range from 25 to 80ºC. The results obtained with both xylanases were compared. The existence of two kinds of regions was identified in XBC and XTL: the first one conserved and highly stable is formed by the so-called palm and fingers domains. The second region exhibits large movements: this is the thumb domain. A kind of open-close motion was identified that maybe can facilitate the access of the xylane to the active center. The inter/intramolecular hydrogen bonds and salt bridges allow to explain at great length the thermostability differences between the two enzymes. It was possible to identify 14 charged residues present in the XTL with no similar in the XBC: such residues must be considered outstanding mutation sites in XBC. In the presence of the substrate, the characteristics of each domain/region are not modified but the stability of the thumb domain is increased. No difference in the affinity for the substrate was detected between the xylanases and it can be suggested that the activation energies are similar. Two water molecules were found in the active site supporting the hydrolysis mechanisms proposed in the literature.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2009-09-23
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.