Lista de Figuras

Figura 1.1.	Representação esquemática das reações químicas envolvidas	
	na preparação dos precursores orgânicos	12
Figura 1.2.	Esquema representativo da eletrooxidação da molécula de	
	Etanol [132]	21
Figura 1.3.	Esquema representativo da oxidação da Acetaldeído em	
	eletrodos baseados em Platina retirado da referência [139].	
	Seta pontilhada indica caminho possível, mas sem provas	
	experimentais	22
Figura 1.4.	(A) Representações esquemáticas bidimensionais de átomos	
	de impurezas substitucionais e intersticiais. (B) Deformação	
	local do retículo em torno de impurezas menores ou maiores	
	que o raio do átomo da rede. Símbolos: • átomo da rede; •	
	átomo de impureza substitucional e • átomo de impureza	
	intersticial	26
Figura 3.1.	Célula de vidro (borosilicato) utilizada nos estudos de	
	caracterização eletroquímica. (1) eletrodo de trabalho; (2)	
	eletrodo de platina platinizado; (3) eletrodo de referência e (4)	
	desaerador	34
Figura 3.2.	Configuração final do eletrodo de trabalho	36
Figura 4.1.	Padrões de difração de raios X obtidos para o sistema	
	RuO_2/Ta_2O_5 na forma de pó, preparado via MPP.(ϕ) Ta_2O_5	
	(ortorrômbico) [JCPDS – 25-0922] e (•) RuO ₂ (rutílica) [JCPDS	
	– 40-1290]	45
Figura 4.2.	Perfil representativo de deconvolução dos picos de difração de	
	raios X obtidos para a amostra na forma de pó para a	
	composição Ru:Ta 50:50 % atômico. (•) RuO ₂ (rutílica)	
	[JCPDS – 40-1290] e (ϕ) Ta ₂ O ₅ (ortorrômbico) [JCPDS – 25-	
	0922]	46
Figura 4.3.	Padrões de difração de raios X obtidos para o sistema	
	RuO_2/Ta_2O_5 na forma de filme fino, preparado via MPP. Ti	
	[JCPDS –01-1197] e (•) RuO ₂ (rutílica) [JCPDS – 40-1290],	46

i

Figura 4.4.	Parâmetros de célula unitária para as amostras em pó (-A- e -	
	▲-) e filme fino (-□- e -□-) em função da quantidade de	
	Rutênio para o sistema tetragonal. (•) Valores retirados da	
	ref. [149]	48
Figura 4.5.	Parâmetros de célula unitária em função da quantidade de	
	Rutênio para o sistema tetragonal. (símbolos fechados)	
	amostras na forma de pó e (símbolos abertos) amostras na	
	forma de filme fino. (a = b) símbolos em preto; (c) símbolos em	
	vermelhos; (-▲- e -☆-) preparado via MT [3];(-■- e -O-)	
	preparado via MPP e (*) valores retirados da ref. [144]	49
Figura 4.6.	Micrografia do filme com composição nominal Ti/RuO2-Ta2O5 -	
	Ru:Ta = 10:90 % atômico. (A) Eletrodo recém-preparado -	
	ampliação 2000 vezes e (B) após o TAV - ampliação 1000	
	vezes, preparado via MPP	56
Figura 4.7.	Micrografia do filme com composição nominal Ti/RuO2-Ta2O5 -	
	Ru:Ta = 30:70 % atômico. (A) Eletrodo recém-preparado e (B)	
	após o TAV, ampliação 2000 vezes, preparado via MPP	56
Figura 4.8.	Micrografia do filme com composição nominal Ti/RuO2-Ta2O5 -	
	Ru:Ta = 50:50 % atômico. (A) Eletrodo recém-preparado e (B)	
	após o TAV, ampliação 2000 vezes, preparado via MPP	57
Figura 4.9.	Micrografia do filme com composição nominal Ti/RuO2-Ta2O5 -	
	Ru:Ta = 80:20 % atômico. (A) Eletrodo recém-preparado e (B)	
	após o TAV, ampliação 2000 vezes, preparado via MPP	57
Figura 4.10.	(A) Micrografia do eletrodo com composição nominal Ti/RuO2-	
	$Ta_2O_5 - Ru:Ta = 80:20$ % atômico. (B) Mapeamento por EDX	
	para os elementos: (1) Oxigênio; (2) Tântalo e (3) Rutênio.	
	Ampliação de 500 vezes, preparado via MPP	61
Figura 4.11.	Espectro de EDX antes (A, C e E) e após o teste acelerado de	
	vida (B, D e F) dos eletrodos de composição nominal:	
	Ti/RuO ₂ -Ta ₂ O ₅ - Ru:Ta = 10:90 % atômico (A e B); 50:50 %	
	atômico (C e D) e 80:20 % atômico (E e F), preparado via	
	MPP	62

Figura 4.12.	Voltamogramas cíclicos representativos do sistema RuO2-	
	Ta ₂ O ₅ . Em solução de H ₂ SO ₄ 0,5 mol dm ⁻³ , ν = 100 mV s ⁻¹ , T =	
	25 °C, $T_{calc} = 450^{\circ}C$, $\phi = 2 \ \mu m$	64
Figura 4.13.	Carga voltamétrica (qa*) dos eletrodos Ti/RuO2-Ta2O5 (por	
	integração da curva voltamétrica, Figura 4.12) em função da	
	composição do óxido (-■-) Método de preparação MPP em	
	solução 0,5 mol dm ⁻³ de H ₂ SO ₄ , T _{calc} .= 450 $^{\circ}$ C; ν = 100 mV s ⁻¹ ;	
	ϕ = 2 $\mu m.$ (-O-) e método tradicional (MT) dados retirado da	
	ref. [3]	65
Figura 4.14.	Razão da q_a^*/q_c^* em função da composição nominal RuO ₂ .	
	(-■-) Método de preparação MPP em solução 0,5 mol dm ⁻³ de	
	H_2SO_4 , T_{calc} = 450 °C; ν = 100mVs ⁻¹ ; ϕ = 2 μ m. (-O-) e método	
	tradicional (MT) dados retirado da ref. [3]	65
Figura 4.15.	Comportamento da curva potencial-tempo em função da	
	composição dos eletrodos sob condições galvanostáticas	
	$(750 \text{ mA cm}^{-2} \text{ em } 0,5 \text{ mol dm}^{-3} \text{ H}_2\text{SO}_4 \text{ a } \text{T} = 80 ^{\circ}\text{C}). () \text{ MPP e}$	
	(—) MT [3]	67
Figura 4.16.	Quantidade de Ru na camada ativa em função da composição	
	nominal do eletrodo antes (∅) e após o TAV (∎) MPP e (■)	
	MI[3], sob condições galvanostáticas (750 mA cm ² em 0,5	~~~
Figure 4.17	mol dm $^{\circ}$ a I = 80 $^{\circ}$ C)	68
Figura 4.17.	Curva de l'afei para RDO do eletrodo de composição hominal	
	$11/RuO_2 - 1a_2O_5$ (Ru: 1a = 80:20 % atomico). Solução	
	0,5 mol diff de H ₂ SO ₄ , $v = 36 \mu v$ S , $\Gamma_{calc} = 430$ C, $\phi = 2 \mu m$.	
	Curvas: () antes da correção para a queda onmica e	71
Figure 4.10	() apos a correção	11
rigura 4.18.	curvas de Talei corrigidas para RDO em tunção da	
	composição. Solução 0,5 moi dm $^{\circ}$ de H ₂ SO ₄ ; v = 56 μ V S $^{\circ}$;	70
	$I_{calc} = 450 \text{ °C}; \phi = 2 \mu\text{m}$	12

- **Figura 4.20.** Voltamogramas cíclicos do eletrodo Ti/RuO₂-Ta₂O₅ (Ru:Ta = 80:20 % atômico). (--- e —) Eletrodo preparado via MPP e (--- e —) eletrodo preparado via MT. Traço sólido na presença de Etanol e traço pontilhado na ausência de substrato orgânico. Eletrólito de suporte, ES = solução 0,5 mol dm⁻³ de H₂SO₄; [Etanol] = 0,5 mol dm⁻³; v = 50 mV s⁻¹; T_{calc}.= 450 °C; ϕ = 2 µm.
- **Figura 4.21.** Densidade de corrente de oxidação do Etanol (i_{Etanol}) para o sistema Ti/RuO₂-Ta₂O₅. (--- e —) Ti/RuO₂-Ta₂O₅ (Ru:Ta = 80:20 % atômico); (--- e —) Ti/RuO₂-Ta₂O₅ (Ru:Ta = 50:50 % atômico) e (--- e —) Ti/RuO₂-Ta₂O₅ (Ru:Ta = 30:70 % atômico). Traço sólido eletrodos preparados via MPP e traço pontilhado eletrodos preparados via MT. Solução 0,5 mol dm⁻³ de H₂SO₄; [Etanol] = 0,5 mol dm⁻³; v = 50 mV s⁻¹; T_{calc}.= 450 °C; ϕ = 2 µm....

77

78

- **Figura 4.27.** Curvas de Tafel corrigidas para a RDO na presença de 5 mmol dm⁻³ de Ácido Acético em função da composição nominal do eletrodo. Eletrólito de suporte 0,5 mol dm⁻³ de H_2SO_4 ; v = 56 μ V s⁻¹; T_{calc}.= 450 °C; ϕ = 2 μ m.....

87

Figura 4.29.	Cromatogramas obtidos para eletrólise do Etanol aplicando-se	
	programa de pulso. () tempo de eletrólise 0 h; () 3 h e ()	
	5 h. Condições: [Etanol] = 5 mmol dm ⁻³ ; coluna Aminex, T = 30	
	$^{\circ}$ C, fase móvel = H ₂ SO ₄ 3,33 mmol dm ⁻³ , fluxo de 0,6 mL min ⁻¹ ,	
	detector: RID	92
Figura 4.30.	Variação da concentração de Etanol (símbolo fechado) e	
	Ácido Acético (símbolo aberto) em função do tempo de	
	eletrólise e composição de eletrodo: (-■-) 90 % Ru; (-●-) 80 %	
	; 70 % Ru (-▲-), preparado via MPP e (-▼-) 80 % Ru,	
	preparado via MT. Pulso: i_{cte} = 75 mA cm ⁻² 20 s e E = -0,15 V	
	2s	93
Figura 4.31.	Decaimento logaritmo da concentração normalizada de Etanol	
	em função do tempo de eletrólise para o sistema RuO ₂ /Ta ₂ O ₅ .	
	(-■-) 90 % Ru; (-●-) 80 %; 70 % Ru (-▲-), preparado via MPP	
	e (- $\mathbf{\nabla}$ -) 80 % Ru, preparado via MT. Pulso: $i_{cte} = 75 \text{ mA cm}^{-2}$	
	20 s e E = -0,15 V 2 s	94
Figura 4.32.	Cromatogramas obtidos para eletrólise de Etanol (50 mmol	
	dm ⁻³). Tempo de eletrólise: (—) 0 h; (—) 3 h e (—) 5 h.	
	Condições de detecção: coluna Aminex, T = 30 °C, fase móvel	
	= H_2SO_4 3,33 mmol dm ⁻³ , fluxo de 0,6 mL min ⁻¹ , detector: RID	96
Figura 4.33.	A variação da concentração do Etanol (- ∇ -); Ácido Acético	
	() e Acetaldeído () em função do tempo de eletrólise	
	para o eletrodo com composição nominal de Ti/RuO2-Ta2O5	
	(Ru:Ta = 80:20 % atômico) preparado via MPP. Condições:	
	$[Etanol] = 50 \text{ mmol dm}^{-3}$; Pulso: $i_{cte} = 75 \text{ mA cm}^{-2} \text{ por } 20 \text{ s e}$	
	E = -0,15 V vs. ERH por 2s; coluna Aminex, T = 30 °C, fase	
	$movel = H_2SO_4$ 3,33 mmol dm ⁻³ , fluxo de 0,6 mL min ⁻¹ ,	
	detector: RID	97
Figura 4.34.	Percentual de orgânico formado após 5 horas de eletrólise de	
	pulso em função da concentração do Etanol. (A) Eletrodo	
	preparado via MPP e (B) eletrodo preparado via MT. (-■-)	
	Acido Acético, (-O-) Acetaldeído e (- \blacktriangle -) CO ₂	99

- Figura 4.35. Eficiência catalítica do eletrodo Ti/RuO₂-Ta₂O₅ (Ru:Ta = 80:20 % atômico) preparado via MPP (coluna vermelha) e MT (coluna verde) em função da concentração de Etanol (mmol dm⁻³): (A) 5; (B) 15; (C) 25; (D) 50; (E) 250 e (F) 500..... 101

- **Figura 6.2.** Voltamogramas cíclicos do eletrodo $Ti/RuO_2-Ta_2O_5$ (Ru:Ta = 30:70 % atômico) na presença de 5 mmol dm⁻³ de Etanol. (—) antes e (—) após eletrólise. Condições experimentais: 0,5 mol dm⁻³ de H₂SO₄; [Etanol] = 5 mmol dm⁻³; $v = 50 \text{ mV s}^{-1}$; T = 25 °C; T_{cal} = 450 °C; A = 2 cm² e ϕ = 2 µm. (A) eletrodo preparado via MPP e (B) preparado via MT...... 111

Figura 6.3.	Célula eletroquímica utilizada nas eletrólises para verificar a	
	formação de Etanol no contra eletrodo. (1) compartimento A;	
	(2) compartimento B; (3) eletrodo de referência; (4) eletrodo de	
	trabalho e (5) eletrodo auxiliar	113