• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.59.2019.tde-11122018-095106
Document
Auteur
Nom complet
Leandro Anghinoni
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
Ribeirão Preto, 2018
Directeur
Jury
Liang, Zhao (Président)
Júnior, Tabajara Pimenta
Macau, Elbert Einstein Nehrer
Tinós, Renato
Titre en portugais
Classificação e previsão de séries temporais através de redes complexas
Mots-clés en portugais
Aprendizado de máquina
Classificação de tendência
Detecção de comunidades
Previsão de tendência
Redes complexas
Séries temporais
Resumé en portugais
O estudo de séries temporais para a geração de conhecimento é uma área que vem crescendo em importância e complexidade ao longo da última década, à medida que a quantidade de dados armazenados cresce exponencialmente. Considerando este cenário, novas técnicas de mineração de dados têm sido constantemente desenvolvidas para lidar com esta situação. Neste trabalho é proposto o estudo de séries temporais baseado em suas características topológicas, observadas em uma rede complexa gerada com os dados da série temporal. Especificamente, o objetivo do modelo proposto é criar um algoritmo de detecção de tendências para séries temporais estocásticas baseado em detecção de comunidades e caminhadas nesta mesma rede. O modelo proposto apresenta algumas vantagens em relação à métodos tradicionais, como o número adaptativo de classes, com força mensurável, e uma melhor absorção de ruídos. Resultados experimentais em bases artificiais e reais mostram que o método proposto é capaz de classificar as séries temporais em padrões locais e globais, melhorando a previsibilidade das séries ao se utilizar métodos de aprendizado de máquina para a previsão das classes
Titre en anglais
Time series trend classification and forecasting using complex network analysis
Mots-clés en anglais
Community detection
Complex networks
Machine learning
Time series
Trend classification
Trend forecasting
Resumé en anglais
Extracting knowledge from time series analysis has been growing in importance and complexity over the last decade as the amount of stored data has increased exponentially. Considering this scenario, new data mining techniques have continuously developed to deal with such a situation. In this work, we propose to study time series based on its topological characteristics, observed on a complex network generated from the time series data. Specifically, the aim of the proposed model is to create a trend detection algorithm for stochastic time series based on community detection and network metrics. The proposed model presents some advantages over traditional time series analysis, such as adaptive number of classes with measurable strength and better noise absorption. Experimental results on artificial and real datasets shows that the proposed method is able to classify the time series into local and global patterns, improving the predictability of the series when using machine-learning methods
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2019-03-26
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.