• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.6.1999.tde-01102014-105050
Document
Auteur
Nom complet
Denise Pimentel Bergamaschi
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1999
Directeur
Jury
Souza, Jose Maria Pacheco de (Président)
Moraes, Suzana Alves de
Oishi, Jorge
Peres, Clovis de Araujo
Santos, Jair Licio Ferreira
Titre en portugais
Correlação intraclasse de Pearson para pares repetidos: comparação entre dois estimadores
Mots-clés en portugais
Dois Estimadores da Correlação Intraclasse de Pearson para Pares Repetidos
Simulação Monte Carlo
Resumé en portugais
Objetivo. Comparar, teórica e empiricamente, dois estimadores do coeficiente de correlação intraclasse momento-produto de Pearson para pares repetidos Pi. O primeiro é o estimador "natural", obtido mediante a correlação momento-produto de Pearson para membros de uma mesma classe (rI) e o segundo, obtido como função de componentes de variância (icc). Métodos. Comparação teórica e empírica dos parâmetros e estimadores. A comparação teórica envolve duas definições do coeficiente de correlação intraclasse PI como medida de confiabilidade (*), para o caso de duas réplicas, assim como uma apresentação da técnica de análise de variância e a definição e interpretação dos estimadores ri e icc. A comparação empírica é realizada mediante um estudo de simulação Monte Carlo com a geração de pares de valores correlacionados segundo o coeficiente de correlação intraclasse, momento-produto de Pearson para pares repetidos. Os pares de valores são distribuídos segundo uma distribuição Normal bivariada, com valores do tamanho da amostra e da correlação intraclasse previamente fixados em: n= 15, 30 e 45 e pI = {O; 0,15; 0,30; 0,45; 0,60; 0,75; 0,9}. Resultados. Comparando-se o vício e o erro quadrático médio dos estimadores, bem como as amplitudes dos intervalos de confiança, tem-se como resultado que o vício de icc foi sempre menor que o vício de rI, mesmo ocorrendo com o erro quadrático médio. Conclusões. O icc é um estimador melhor, principalmente para n pequeno (por exemplo 15). Para valores maiores de n (30 ou mais), os estimadores produzem resultados iguais até a segunda casa decimal.
Titre en anglais
Intraclass correlation of Pearson repeated for couples: comparison between two estimators
Mots-clés en anglais
Monte Carlo Study
Two Estimators of Pearson's Pairwise Correlation Coefficient
Resumé en anglais
Objective. This thesis presents and compares, theoretically and empirically, two estimators of the intraclass correlation coefficient pI, defined as Pearson's pairwise intraclass correlation coefficient. The first is the "natural" estimator, obtained by Pearson's moment-product correlation for members of one class (rI) while the second was obtained as a function of components of variance (icc). Methods. Theoretical and empirical comparison of the parameters and estimators are performed. The theoretical comparison involves two definitions of the intrac1ass correlation coefficient pI as a measure of reliability (*) for two repeated measurements in the same class and the presentation of the technique of analysis of variance, as well as for the definition and interpretation of the estimators ri and icc. The empirical comparison was carried out by means of a Monte Carlo simulation study of pairs of correlated values according Pearson's pairwise correlation. The pairs of values follow a normal bivariate distribution, with correlation values and sample size previously fixed: n= 15, 30 e 45 and Pl = {O; 0,15; 0,30; 0,45; 0,60; 0,75; 0,9}. Results. Bias and mean square error for the estimators were compared as well as the range of the intervals of confidence. The comparison shows that the bias of icc is always smaller than of rI This also applies to the mean square error. Conclusions. The icc is a better estimator, especially for n less than or equal to 15. For larger samples sízes (n 30 or more), the estimators produce results that are equal to the second decimal place. (*) Fórmula
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2014-10-01
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.