• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.6.2020.tde-06042020-105703
Documento
Autor
Nombre completo
Benedito Galvão Benze
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 1997
Director
Tribunal
Souza, José Maria Pacheco de (Presidente)
Oishi, Jorge
Oliveira, Lael Almeida de
Pereira, Carlos Alberto de Braganca
Silva, Rebeca de Souza e
Título en portugués
Análise de estimadores das curvas de sobrevivência em estudos de pequena escala, sob dados censurados
Palabras clave en portugués
Análise de Sobrevivência
Comunicação Sigilosa
Estatísticas de Saúde
Inferência
Transplante de Rim
Resumen en portugués
Mediante o estudo do viés e erro médio quadrático, foi com- parado o desempenho dos estimadores F-N-P* de Kaplan e Meier (1958) e de Kitchin (1980) e do estimador bayesiano** de Salinas e Pereira (1992), das curvas de sobrevivência sob dados censurados. Além disso, foi pesquisado e comparado outro estimador F-N-P para esse mesmo fim, que foi chamado estimador modificado de Kitchin (pela mudança realizada na taxa de risco acumulada do estima dor de Kitchin nos subintervalos formados pelos tempos consecutivos das ocorrências dos eventos de interesse). As estimativas são calculadas e comparadas primeiramente em um exemplo de dados clínicos reais de transplantes renais humanos e depois em amostras geradas por simulação a partir de modelos teóricos, assumindo distribuições exponencial e de Weibull. As simulações indicaram que o estimador de Kaplan e Meier é melhor que os demais, isto é, tem menor erro quadrático médio em todas as circunstâncias abordadas. Neste mesmo sentido o estimador modificado apresentou-se melhor que o de Kitchin. Com uma priori não informativa, o estimador de Salinas e Pereira teve melhor desempenho que o modificado de Kitchin. A análise simultânea do desempenho e simplicidade operacional aponta para os estimadores de Kaplan e Meier e Modificado de Kichin, nessa ordem. * A sigla refere-se à inferência estatistica segundo a metodologia desenvolvida por Fisher, Neyman e Pearson, também conhecida como "inferência clássica"(15,37). ** O termo refere-se à inferência estatística desenvolvida segundo a linha filosófica sugerida por um trabalho de Bayes (1763) (15).
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
The performances of F-N-P* estimators of the survival curve for censored data of Kaplan & Meier (1958), Kitchin (1980) and the bayesian estimator** of Salinas & Pereira (1992) are compared using bias and mean squared error. A F-N-P estimator, refered to as modified Kitchin, is proposed here and compared with the others. It is based on the change of Kitchin cumulative risks ratios for the sub-intervals given by the consecutive times of occurrence of the events of interest. The estimates are computed and compared for two cases: first for a real data set related to human renal transplants. And second, for simulated data sets developed from theoretical models for exponential and Weibull distributions. Simulated results indicated that the Kaplan & Meier estimator is better than the others, that is, it presented least mean squared error in all situations discussed in this work. The results also indicated that the modified estimator is better than the Kitchin estimator. Using a non-informative "a priori" distribution, the Salinas & Pereira estimator presented better performance than the modified Kitchin estimator. The simultaneous analysis of the performance and the operational simplicity point out the Kaplan & Meier and modified Kitchin estimators, in this order. * F-N-P refers to the methodology developed by Fisher, Neyman and Pearson, also known as "classical inference" (15,37). ** Bayesian inference refers to the inference whose development were based on the work of Bayes (1763) (15).
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
DR_331_Benze_1997.pdf (5.82 Mbytes)
Fecha de Publicación
2020-04-06
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.