• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.60.2009.tde-27052009-170433
Document
Author
Full name
Ricardo Oliveira dos Santos Soares
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
Ribeirão Preto, 2009
Supervisor
Committee
Caliri, Antonio (President)
Costa, Maria Cristina Nonato
Ward, Richard John
Title in Portuguese
Dinâmica molecular de proteínas: estabilidade e renaturação
Keywords in Portuguese
dinâmica molecular.
estabilidade térmica
folding de proteína
Ts Kappa
Abstract in Portuguese
Proteínas são heteropolímeros lineares essenciais à vida, responsáveis pela estruturação dos organismos e pela maioria dos processos bioquímicos que os mantêm vivos e permitem sua reprodução. Essa variedade de funções é refletida na diversidade estrutural encontrada no universo das proteínas, já que sua função é intrinsecamente ligada à sua rigorosa conformação espacial. A partir dos experimentos de Anfinsen (1973), ficou demonstrado que o enovelamento dessas moléculas (folding) se dá essencialmente por meio de um processo físico-químico guiado pela interação entre os aminoácidos da cadeia protéica e entre estes e o meio solvente, quando sob condições fisiológicas (temperatura, pressão, pH). O completo entendimento do mecanismo de folding tem também importância médica, pois várias doenças como mal de Alzheimer, diabetes tipo II, encefalite bovina espongiforme e várias formas de câncer estão relacionadas com falhas estruturais das proteínas. Neste trabalho, por meio de experimentação computacional por dinâmica molecular (DM) em diferentes condições térmicas, estudamos inicialmente o papel das pontes dissulfeto (S-S) e das ligações de hidrogênio (LH) na estabilidade da proteína. Em seguida, adotando exclusivamente o regime de alta temperatura (T = 448K) em combinação com simulações de longa duração (até ~100ns), no intuito de expandir a exploração do espaço configuracional, verificamos a premissa de que as forças entrópicas, geradas pelo efeito hidrofóbico, seriam dominantes no processo de busca pela estrutura nativa. Neste trabalho foi utilizada como um protótipo de proteína pequena e com pontes S-S, a toxina Ts Kappa (MM=3,8 Kda; pdb id: 1tsk), que é dotada de três pontes S-S. A estabilidade conformacional foi analisada por meio de uma série de simulações de DM em temperaturas crescentes e em duas situações: com e sem os cross-links S-S. Nossos resultados indicam que para incrementos nas temperaturas significativamente elevadas, como 50K acima da temperatura em que a estrutura nativa foi determinada por NMR (283K), a remoção das S-S não compromete a estabilidade conformacional da proteína. De fato, a ausência dos cross-links elimina certas restrições geométricas permitindo agora que diferentes combinações de LH sejam feitas, inclusive entre resíduos adjacentes à cisteína, os quais de certa forma substituem as pontes S-S em seus papeis conformacionais pois a estrutura nativa é essencialmente mantida. No segundo experimento o espaço configuracional foi varrido extensamente durante 100ns e à temperatura de 398K. No caso da Ts Kappa com suas pontes dissulfeto intactas, a desestruturação da proteína é limitada pelas fortes pontes covalentes S-S, mas com a remoção delas, a proteína se desnaturou completamente ao longo dos primeiros 50ns. Contudo, a partir deste ponto a cadeia desnaturada passou a seguir, de forma espontânea e sistemática, uma rota de re-estruturação em direção à nativa, com o reestabelecimento de todas suas estruturas secundárias. Ao redor de 100ns a cadeia atingiu um estado de grande identidade estrutural com sua correspondente estrutura nativa. Em conclusão, os presentes resultados corroboram as premissas de que o folding de proteínas ocorre por meio de um processo em duas etapas, temporalmente separadas: no início, as forças entrópicas são dominantes e são as que induzem a cadeia para a conformação nativa. Então, uma vez na vizinhança da estrutura nativa, as pontes de hidrogênio (agora protegidas da competição com o meio solvente), juntamente com um mais eficiente empacotamento estrutural das cadeias laterais devido às complementaridade estéricas das mesmas (e assim otimizando as interações de van der Waals), iniciam a etapa de estabilização energética da proteína.
Title in English
Protein Molecular Dynamics: stability and thermal renaturation
Keywords in English
molecular dynamics
protein folding
thermal stability
Ts Kappa
Abstract in English
Proteins are linear heteropolymers essential for life; they are responsible for many distinct functions as the structural components of organism, and for most of the biochemical processes to maintain a reproductive life. Such diversity of functions is correlated with the extremely large accessible conformational space, since function and spatial structure are interdependent. After Anfinsen experiments (1973), it becomes clear that the protein folding is essentially a physical-chemical process guided by interactions among the chain constituents (amino acid sequence) and interactions between the chain and the solvent, under physiological conditions (temperature, pressure, pH). Because miss-folded proteins are related with diseases (Alzheimer, type II diabetes, several forms of cancer, etc.) the full understanding of the folding mechanism has also significant medical interest. In this work, by means of molecular dynamics (MD) simulations under distinct thermal conditions, we first consider the role of disulfide cross-links (S-S) and hydrogen bonds (HB) with respect to the protein thermal stability. Then, using exclusively high temperature regime (T = 448K) combined with extended time simulations (up to ~100ns), in order to fully span of configurational space, we analyzed the hypothesis that the entropic forces, generated by the hydrophobic effect, are dominant in the search process for the native structure. The protein Ts Kappa was used a prototype for small proteins having S-S bridges (MM=3,8Kda; 3 S-S - pdb id: 1tsk). The thermal conformational stability was analyzed from a series of MD simulations under growing temperatures, using two distinct cases: with and without cross-links S-S. Our results suggest that for significant temperature increments, such as 50K above the temperature used in the Ts Kappa structure determination (by NMR at 283K), the thermal conformational stability of the proteins is not affected if the S-S bridges are removed. Indeed, cutting of the cross-links eliminates certain geometrical constraints, what permits the formation of new combinations of HB, which in some way take the place of the S-S bridges on its conformational role since the native structure is essentially maintained. In the second computational experiment, the configurational space was extensively swapped during 100ns at a fixed temperature T=398K. In the case with preserved S-S bridges, the structural unpacking is limited by the three covalent cross-links, but without the S-S bridges the protein denaturation was complete after 50ns. However, after this point the chain started spontaneous and systematically a configurational rote that finally, after about 100ns, reached a conformation very similar with the native (RMSD » 0.5nm), reestablishing all its secondary structure. Concluding, the present results corroborate the hypothesis that the protein folding is a process in two stages temporally separated: first, entropic forces are dominant and guide the chain into the native structure, and then, once in the native neighborhood, the HB (now protected from competition with the solvent), altogether with a more efficient structural specificity of the side chains (optimizing the van de Walls interactions), start the energetic stabilization of the protein.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2009-10-01
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.