• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.74.2018.tde-23022018-092054
Documento
Autor
Nombre completo
Juliana Monteiro Balage
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
Pirassununga, 2017
Director
Tribunal
Silva, Saulo da Luz e (Presidente)
Barbin, Douglas Fernandes
Bonin, Marina de Nadai
Chizzotti, Mario Luiz
Trindade, Marco Antonio
Título en portugués
Avaliação da qualidade da carne bovina utilizando imagem hiperespectral no infravermelho próximo
Palabras clave en portugués
Classificação
Maciez
Mapas de distribuição
NIR
PLS-DA
Resumen en portugués
Cada vez mais, a indústria requer métodos em tempo real para o controle de qualidade da carne fresca, a fim de melhorar a eficiência produtiva, garantir homogeneidade dos produtos e atender expectativas do consumidor. No presente trabalho, a imagem hiperespectral foi empregada para avaliação da qualidade da carne de bovinos Nelore com ênfase para a maciez e características relacionadas, e, ainda, a construção de mapas de distribuição das características para observação da variabilidade dessas entre e dentro de amostras. Para investigar se o uso de diferentes grupos musculares aumenta a variabilidade dos valores de referência, promovendo melhora nos modelos de predição e classificação da maciez, foram utilizadas amostras do músculo Longissimus(94) e B. femoris (94) de bovinos Nelore. Para investigar se a seleção da região de interesse (ROI) na imagem no exato local onde foi coletado o cilindro para determinação da força de cisalhamento melhora os modelos de predição e classificação da maciez, foram utilizadas amostras do músculo Longissimus (50). Após a aquisição da imagem (1.000 - 2.500 nm), cada amostra foi avaliada seguindo metodologia tradicional para força de cisalhamento, matéria seca, proteína bruta, lipídios e comprimento de sarcômero. Os dados espectrais e espaciais foram analisados por técnicas quimiométricas e modelos PLSR e PLS-DA foram construídos. Em relação à abordagem com diferentes músculos, os dados foram modelados separadamente para evitar que fenômenos devidos às diferenças musculares fossem equivocadamente atribuídos às características investigadas. Ainda assim, amostras de Longissimus com maciez inaceitável foram classificadas com sensibilidade = 87% e amostras macias de B. femoris com sensibilidade = 90%, ambas na validação externa. Com relação à forma de seleção da ROI, os modelos de classificação utilizando ROI local apresentaram melhor desempenho do que os modelos com ROI de toda a amostra (sensibilidade na validação externa para a classe dura = 33% e 70%, respectivamente). Entretanto, o modelo mais geral tem desempenho melhor na construção de mapas de distribuição da maciez, com de 72% das imagens preditas corretamente classificadas.
Título en inglés
Beef quality evaluation using near infrared hyperspectral imaging
Palabras clave en inglés
Classification
Distribution maps
NIR
PLS-DA
Tenderness
Resumen en inglés
Increasingly, industry requires real-time methods for quality control of fresh meat in order to improve production efficiency, ensure product homogeneity and meet consumer expectations. In the present work, the hyperspectral image was used to evaluate the quality of Nellore beef with emphasis on tenderness and characteristics related to it, and also the construction of distribution maps to observe the variability of these characteristics between and within samples. To investigate whether the use of different muscle groups increases the variability of the reference values, improving tenderness prediction and classification models, samples from Longissimus (94) and B. femoris (94) of Nellore cattle were used. To investigate whether the selection of the region of interest (ROI) in the image at the exact location where the shear force cores were collected improves tenderness prediction and classification models, samples from Longissimus muscle were used (50). After image acquisition (1,000 - 2,500 nm), each sample was evaluated following traditional methodology for shear force, dry matter, crude protein, lipids and sarcomere length. The spectral and spatial data were analyzed by chemometric techniques and PLSR and PLS-DA models were constructed. Regarding the approach with different muscles, the data were modeled separately to avoid that phenomena due to muscle differences were mistakenly attributed to the characteristics investigated. Nevertheless, samples from Longissimus with unacceptable tenderness were classified with sensitivity = 87% and tender samples from B. femoris with sensitivity = 90%, both in the external validation. Regarding the ROI selection, the classification models using local ROI presented better performance than the ROI models of the whole sample (external validation sensitivity for the tough class = 33% and 70%, respectively). However, the more general model had better performance in the tenderness distribution maps, with 72% of predicted images correctly classified.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
DO5371852COR.pdf (4.97 Mbytes)
Fecha de Publicación
2018-02-28
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.