• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.75.2024.tde-17072024-083806
Document
Author
Full name
Guilherme Kazuo Inui
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2024
Supervisor
Committee
Silva, Juarez Lopes Ferreira da (President)
Caldas, Marilia Junqueira
Oliveira, Caio Costa
Title in Portuguese
Perovskitas híbridas com moléculas orgânicas quirais: um estudo Ab initio das propriedades físico-químicas
Keywords in Portuguese
alinhamento de bandas
DFT
perovskita quiral
propriedades fisico-químicas
Abstract in Portuguese
A incorporação de moléculas quirais em materiais baseados em perovskitas híbridas abriu novos caminhos para ajustar as propriedades optoeletrônicas dessas perovskitas por meio da transferência de quiralidade para a estrutura inorgânica. No entanto, ainda há uma lacuna na compreensão da interação em escala atômica entre moléculas quirais e a composição química que contribuem na melhora das propriedades físico-químicas desses materiais. Neste estudo, utilizamos a teoria do funcional de densidade para investigar as propriedades estruturais e eletrônicas de perovskitas quirais (R-/S-NEA)2BX4 (R-/S-NEA = R-/S-1-(1-Naftil)etilamônio, onde B = Ge, Sn, Pb, X = Cl, Br, I). Constatamos que os enantiômeros R e S e os modelos de cristais tridimensionais e slabs da estrutura Ruddlesden-Popper têm diferenças mínimas nas constantes de rede, parâmetros estruturais locais e propriedades eletrônicas. No entanto, os enantiômeros diferentes resultam em orientações opostas de inclinação octaédrica, decorrentes da transferência de quiralidade para a estrutura inorgânica, e, também, uma consequência da substituição da eletronegatividade do halogênio. Essa transferência também é evidente nos efeitos de acoplamento spin-órbita de RashbaDresselhaus na estrutura eletrônica. Além disso, demonstramos que as diferenças nos band gap são principalmente governadas pelos níveis de energia atômica naturais dos elementos inorgânicos, enquanto as moléculas orgânicas desempenham um papel crucial no controle do potencial iônico e afinidade eletrônica para sistemas com átomos leves. Os valores de band gap variam de 1,91 eV a 3,77 eV, apontando para o potencial de design de materiais optoeletrônicos avançados.
Title in English
Hybrid perovskites with chiral organic molecules: an Ab initio study of physicochemical properties
Keywords in English
band offsets
chiral perovskites
DFT
physicochemical properties
Abstract in English
The incorporation of chiral molecules into hybrid perovskite-based materials has paved the way for tailoring the optoelectronic properties of these perovskites through chirality transfer to the inorganic framework. However, there remains a gap in understanding the atomic-scale interaction between chiral molecules and the chemical composition driving the physicochemical properties of these materials. In this study, we employ density functional theory to investigate the structural and electronic properties of chiral perovskites (R-/S-NEA)2BX4 (R-/S-NEA = R-/S-1-(1-Naphthyl)ethylammonium, where B = Ge, Sn, Pb, X = Cl, Br, I). We find that R- and S-enantiomers and 3D bulk and slab models of the RuddlesdenPopper structure exhibit minimal differences in lattice constants, local structural parameters, and electronic properties. However, different enantiomers lead to opposite orientations of octahedral tilting due to chirality transfer to the inorganic framework, a consequence of halide electronegativity substitution. This transfer is also evident in RashbaDresselhaus spin-orbit coupling effects on the electronic band structure. Additionally, we demonstrate that differences in band gap are primarily governed by the natural atomic energy levels of inorganic elements, while organic molecules play a crucial role in controlling ionic potential and electron affinity for systems with light atoms. Band gap values range from 1,91 eV to 3,77 eV, pointing to the potential for designing advanced optoelectronic materials.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2024-07-19
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.