• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.76.2017.tde-12092017-081937
Documento
Autor
Nombre completo
Camilo Akimushkin Valencia
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2017
Director
Tribunal
Oliveira Junior, Osvaldo Novais de (Presidente)
Martinez, Alexandre Souto
Mello, Rodrigo Fernandes de
Mesquita, Rickson Coelho
Pardo, Thiago Alexandre Salgueiro
Título en portugués
Propriedades de redes aplicadas à atribuição de autoria
Palabras clave en portugués
Línguas naturais
Reconhecimento de autoria
Redes complexas
Séries temporais
Resumen en portugués
O reconhecimento de autoria é uma área de pesquisa efervescente, com muitas aplicações, incluindo detecção de plágio, análise de textos históricos, reconhecimento de mensagens terroristas ou falsificação de documentos. Modelos teóricos de redes complexas já são usados para o reconhecimento de autoria, mas alguns aspectos importantes têm sido ignorados. Neste trabalho, exploramos a dinâmica de redes de co-ocorrência e a relação com as palavras que representam os nós e descobrimos que ambas são claras assinaturas de autoria. Com otimização dos descritores da topologia das redes e de algoritmos de aprendizado de máquina, foi possível obter taxas de acerto maiores que 85%, sendo atingida uma taxa de 98.75% em um caso específico, para coleções de 80 livros, cada uma compilada de 8 autores de língua inglesa com 10 livros por autor. Esta tese demonstra que existem ainda aspectos inexplorados das redes de co-ocorrência de textos, o que deve permitir avanços ainda maiores no futuro próximo.
Título en inglés
Network features for authorship attribution
Palabras clave en inglés
Authorship attribution
Complex networks
Spoken languages
Time series
Resumen en inglés
Authorship attribution is an active research area with many applications, including detection of plagiarism, analysis of historical texts, terrorist message identification or document falsification. Theoretical models of complex networks are already used for authorship attribution, but some issues have been ignored. In this thesis, we explore the dynamics of co-occurrence networks and the role of words, and found that they are both clear signatures of authorship. Using optimized descriptors for the network topology and machine learning algorithms, it has been possible to achieve accuracy rates above 85%, with a rate of 98.75% being reached in a particular case, for collections of 80 books produced by 8 English-speaking writers with 10 books per author. It is also shown that there are still many unexplored aspects of co-occurrence networks of texts, which seems promising for near future developments.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-09-29
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.