• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.76.2008.tde-28082008-115020
Document
Author
Full name
Poliana Heiffig Penteado
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 2008
Supervisor
Committee
Libero, Valter Luiz (President)
Silva, Antonio Jose Roque da
Xavier, Jose Candido
Title in Portuguese
Modelo de Heisenberg antiferromagnético com interações não-uniformes
Keywords in Portuguese
Cadeia alterna
Física da matéria condensada
Modelo de Heisenberg
Teoria do funcional da densidade
Abstract in Portuguese
Nesta dissertação, estudamos cadeias unidimensionais antiferromagnéticas de spins 1/2 modeladas pelo Hamiltoniano de Heisenberg na presença de inomogeneidades causadas principalmente pela introdução de ligações substitucionais (defeitos nas ligações) e por efeitos de borda. Interessados então em determinar a energia do estado fundamental de sistemas com quaisquer distribuições das ligações, utilizamos o formalismo da Teoria do Funcional da Densidade (DFT) desenvolvido para o modelo de Heisenberg. O formalismo da DFT permite a estimativa da energia do estado fundamental de sistemas não-homogêneos conhecendo-se o sistema homogêneo. Construímos funcionais na aproximação da ligação local (LBA), proposta recentemente em analogia à já conhecida LSA (aproximação local para o spin). A obtenção dos funcionais se baseou no estudo do modelo de uma cadeia de spins em que as ligações são alternadas, isto é, a interação de troca se alterna em valor de sítio para sítio. Isso originou um funcional não-local na interação de troca da cadeia. Apesar disso, continuamos utilizando a nomenclatura LBA. Todos os resultados fornecidos pelos funcionais são comparados a dados provenientes de diagonalização numérica exata.
Title in English
Antiferromagnetic Heisenberg model applied to nonuniform interactions
Keywords in English
Alternating chain
Condensed matter physics
Density-functional theory
Heisenberg model
Abstract in English
In this dissertation, we use the Heisenberg model to describe inhomogeneous antiferromagnetic spin 1/2 chains. The translational invariance is broken mainly due to the non-uniform distribution of bond interactions (defects) and the presence of boundaries. Interested in obtaining the ground-state energy of systems with any distribution of exchange couplings (Jij), we use the density-functional theory (DFT) formalism, developed for the Heisenberg model. The DFT formalism allows an estimate of the ground-state energy of inhomogeneous systems based on the homogeneous systems. We build functionals for the ground-state energy using a local bond approximation (LBA), recently proposed in analogy to the already known LSA (local spin approximation). To obtain the functionals we studied a model that describes an alternating chain, in which the exchange coupling alternates from site-to-site. This resulted in non-local functionals on the spin-spin exchange interaction. Nevertheless, we still call them LBA functionals. All the results from the functionals are compared with exact numerical data.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2008-08-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.