• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.76.2014.tde-02072014-150239
Documento
Autor
Nombre completo
Washington da Silva Sousa
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 2014
Director
Tribunal
Faria, Roberto Mendonça (Presidente)
Bechtold, Ivan Helmuth
Guimarães, Francisco Eduardo Gontijo
Rodrigues, Paula Cristina
Santos, Lucas Fugikawa
Título en portugués
Condução eletrônica e iônica em células eletroquímicas poliméricas emissoras de luz
Palabras clave en portugués
Célula eletroquímica emissora de luz
Polieletrólito polimérico
Relaxação dielétrica
Transporte iônico e eletrônico
Resumen en portugués
As células eletroquímicas emissoras de luz (PLECs) pertencem a um novo ramo importante na optoeletrônica orgânica devido ao seu grande potencial para ser usado como ponto - pixels para telas coloridas e também para painéis de iluminação. Diferentemente de diodos orgânicos emissores de luz (OLEDs), a tecnologia de OLECs ainda está em estágios iniciais de desenvolvimento, em comparação com a tecnologia de OLED , OLECs tem a vantagem de ser operado em ambas as polaridades de tensão ( para a frente ou de polarização reversa ), e, além disso, o seu desempenho é menos dependente dos materiais do eletrodos e a espessura da camada ativa do dispositivo. A camada ativa de um OLEC compreende uma mistura de um polímero eletroluminescente conjugado e um eletrólito de polímero. Consequentemente, o transporte elétrico durante a operação do dispositivo envolve uma combinação de dinâmica iônica e eletrônica e efeitos intrincados nas interfaces com os eletrodos. A literatura apresenta até agora duas abordagens diferentes para descrever o fenômeno de transporte nas OLECs. O modelo de eletrodinâmica, que combina separação iônica com o processo de difusão limitada eletrônica, e o modelo de dopagem eletroquímico que considera uma dopagem eletroquímica do polímero conjugado, dando a formação de uma junção p-i-n na camada ativa. Usando as medidas de decaimento da corrente sobre uma voltagem aplicada e espectroscopia de impedância /admissão , investigamos o transporte de portadores de carga em um OLEC tendo como camada ativa uma mistura de poli [ ( 9, 9 - dioctyl - 2, 7 - divinileno - fluorenileno ) - alt - co - { 2 - metoxi -5 - ( 2 - etil- hexiloxi ) -1,4 - fenileno } ] ( PFGE ) , com poli ( óxido de etileno ) ( PEO ) complexado com triflato de lítio ( TriLi ) , na proporção 01:01 : X , onde X foi de 0,10 , 0,05 , 0,01 , 0,00. Foram obtidos dados importantes relacionados com efeito iônico e eletrônico durante a operação deste PLEC, sendo que as medidas de transiente e de impedância mostraram que o movimento iônico auxilia o processo de injeção eletrônica. Outro fato relevante é que o desempenho da PLEC é dependente da formação da dupla camada iônica que tem sua espessura abaixo de 10 nm e que o processo de sua formação depende altamente da condução iônica, que por sua vez vai depender da quantidade de íons e de sua mobilidade, sendo influenciando por fatores como concentração de sal e temperatura do dispositivo. As medidas realizadas mostram que as PLECs com 2,5 e 5% de concentração de sal apresentam o melhor desempenho.
Título en inglés
Electronic and ionic conduction in polymer light-emitting electrochemical cells
Palabras clave en inglés
Dielectric relaxation
Ionic and electronic transport
Light emitting electrochemical cell
Polymer electrolyte
Resumen en inglés
Organic Light-emitting Electrochemical Devices (OLECs) belong to a new important branch in organic optoelectronics due to their great potential to be used as dot-pixels for color displays and also to lighting panels. Differently from organic light-emitting diodes (OLEDs), the technology of OLECs is still in early stages of development. In comparison to OLED technology, OLECs have the advantage in being operated in both voltage polarities (forward or reverse bias), and, in addition, their performance is less dependent on the electrode materials and the device thickness. The active layer of an OLEC comprises a mixture of a conjugated electroluminescent polymer and a polymer electrolyte. Consequently, the electrical transport during the device operation involves a combination of ionic and electronic dynamics and intricate effects at the interfaces with the electrodes. The literature presents so far two different approaches to describe the transport phenomenon in the OLECs. The electrodynamic model, which combines ionic charge separation with electronic diffusionlimited process, and the electrochemical doping model that consider an electrochemical doping of the conjugated polymer, giving and the formation of a p-i-n junction in the active layer. Using current decay under an applied voltage measurements and impedance/admittance spectroscopy, we investigate charge carrier transport in an OLEC having as active layer a mixture of poly [(9, 9 - dioctyl - 2, 7 - divinileno - fluorenileno) - alt - co - {2 - methoxy -5 - (2 - ethyl-hexyloxy) -1,4 - phenylene}] (PFGE), with poly (ethylene oxide) (PEO) complexed with lithium triflate (TriLi), in the proportion 1:1:X, where X was 0.10, 0.05, 0.01, 0.00. We have obtained important results related to ionic and electronic effect during this operation PLEC. This measurements of transient current and impedance showed that ionic movement aids the process of electron injection. Another relevant fact is that the performance of PLEC is dependent on the formation of ionic double layer having thickness below 10 nm. The formation of this double layers is highly dependent on the ionic conduction, which in turn will depend on the amount of ions. The ionic mobility is influenced by factors such as salt concentration and temperature of the device. The measurements show that PLECS with 2.5 and 5% salt concentration had the best perform.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2014-07-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.