• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.76.2013.tde-09092013-082912
Document
Auteur
Nom complet
Guilherme de Guzzi Bagnato
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 2013
Directeur
Jury
Farias, Kilvia Mayre (Président)
Cesar, Claudio Lenz
Gammal, Arnaldo
Titre en portugais
Determinação da distribuição de momento em superfluidos atômicos aprisionados: regimes turbulento e não turbulento
Mots-clés en portugais
Condensação de Bose-Einstein
Lei de escala
Turbulência quântica
Resumé en portugais
A turbulência clássica é um fenômeno de natureza caótica, mas de difícil estudo por ser constituída pela fusão e superposição de vórtices aleatórios, dificultando sua descrição matemática. A turbulência quântica (TQ), embora também caótica, é composta por vórtices quantizados, que favorecem o controle experimental e sua definição teórica. Embora a evidência experimental da TQ tenha sido obtida em sistemas de He líquido, sua caracterização em condensados de Bose-Einstein (BEC) ainda não foi totalmente realizada. Neste trabalho, estudamos a distribuição de momento em BECs expandidos em tempo de voo, nos regimes convencional e turbulento. Para a produção experimental da amostra quanticamente degenerada, utilizamos a técnica do resfriamento evaporativo em átomos de 87Rb, previamente resfriados em uma armadilha puramente magnética do tipo QUIC. A turbulência quântica foi produzida no sistema através de um par de bobinas de excitação capaz de produzir uma perturbação oscilatória na nuvem previamente condensada. O diagnóstico da amostra aprisionada é feito por imagem de absorção durante expansão livre da nuvem. Durante a expansão, tanto a nuvem condensada quanto a turbulenta, alcançaram um valor assintótico no aspect ratio, indicando uma evolução isotrópica. A partir deste resultado, elaboramos um método teórico capaz de determinar a projeção isotrópica da distribuição de momento, baseado na imagem produzida experimentalmente. Através de argumentos de simetria e de uma transformada integral, recuperamos a densidade de momento tridimensional da projeção, para então determinar o espectro de energia cinética da nuvem, observando uma lei de escala para um estreito intervalo de momento. A lei de escala já foi prevista teoricamente para sistemas quânticos e medida para o He superfluido, mas pela primeira vez foi evidenciada em um BEC. Desta forma, os resultados corroboram a existência da turbulência quântica em uma amostra quanticamente degenerada, introduzindo os BECs como candidatos alternativos ao He líquido superfluido no estudo deste fenômeno.
Titre en anglais
Determination of momentum distribution in a superfluid atomic trap: turbulent and non-turbulent regimes
Mots-clés en anglais
Bose-Einstein condensation
Quantum turbulence
Scale power law
Resumé en anglais
Classical turbulence is a chaotic phenomenon that requires labored work, because of its merging and overlapping of random vortices nature, which hinders its mathematical description. Quantum turbulence (QT), although chaotic, is comprised of quantized vortices that favor the experimental control and its theoretical definition. Although experimental evidence of QT has been proved in liquid helium systems, its characterization in Bose-Einstein condensates (BEC) has not been fully accomplished. In this work, we studied the momentum distribution of expanding turbulent and non-turbulent BEC. For experimental achievement of the quantum degenerated sample, we used evaporative cooling in rubidium atoms, previously cooled in a QUIC trap. Quantum turbulence was produced through a pair of excitation coils capable of producing an oscillatory perturbation in the cloud previously condensed. The diagnosis of the trapped sample is done by absorption image during free expansion of the cloud. During the expansion, both clouds achieved a asymptotic value of the aspect ratio, indicating an isotropic evolution. From this result, we have developed a theoretical method able to determine the projection of the isotropic distribution of momentum, based on the image produced experimentally. Through symmetry arguments and an integral transformation, we recovered the tridimensional momentum distribution of the projection and then determined the kinetic energy spectrum of the cloud, observing a scaling power law for a narrow range of momenta. The scaling law has been theoretically predicted for quantum systems and has been proved to liquid helium superfluid, but, in this work, was for the first time evidenced in a BEC. Thus, the results support the existence of quantum turbulence in our quantum degenerated sample, introducing the BECs as potential candidates besides liquid helium superfluid for the study of this phenomenon.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2013-09-11
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.